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▶ Bojan Orel, Osnove numerične matematike, Založba FE in FRI.
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Obveznosti

▶ Predavanja: 2 ure na teden

▶ Vaje: 2 uri na teden

▶ Pisni izpit: 50% ocene

▶ Izpit iz teorije: 50% ocene
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Vsebina predmeta

1. Računanje in vloga napak pri numerični matematiki

2. Reševanje sistemov linearnih enačb

3. Reševanje nelinearnih enačb

4. Numerično odvajanje in integriranje

5. Numerično reševanje diferencialnih enačb
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Prvo poglavje:

Uvod v numerično
računanje

▶ Numerično računanje
▶ Predstavljiva števila
▶ Zaokrožitvene napake
▶ Katastrofalno seštevanje/odštevanje
▶ Primeri (ne)stabilnega računanja
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Numerično in simbolno računanje
Numerično računanje:
▶ Takoj v formulo vstavljamo števila

▶ Pridemo do numeričnega rezultata - numerične rešitve

Simbolno računanje:
▶ simboli predstavljajo števila

▶ izraz preoblikujemo s simbolnim računanjem do novega
simbolnega izraza - analitična rešitev

Primer
▶ Numerično:

(17.36)2 − 1
17.36 + 1

= 16.36; 0.25, 0.33333 . . . (?), 3.14159 . . . (?)

▶ Simbolno:

x2 − 1
x + 1

= x − 1;
1
4
,

1
3
, π, tan83
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Numerično in simbolno računanje

Primer
1 >> x=rand;(xˆ2-1)/(x+1)-(x-1)

2

3 ans=1.387778780781446e-17

Analitično bi rezultat moral biti 0, vendar zaradi numeričnih
napak dobimo majhno napako.
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Kaj zanima numerično matematiko?
Metoda. . . matematična konstrukcija, s katero rešujemo problem

Algoritem. . . koraki metode

Implementacija. . . zapis algoritma v izbranem jeziku

Kaj pomeni ‘biti numerično dober’?

majhna sprememba podatkov ⇒ majhna napaka rezultata

Tipična vprašanja numerične matematike:
▶ Ali je problem občutljiv?

▶ Ali je metoda ‘dobra’?

▶ Ali je algoritem robusten - deluje na širokem spektru
problemov?

▶ Ali je implementacija hitra - časovna in prostorska
zahtevnost?
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Občutljivih problemov NM ne more rešiti

Problem je občutljiv, če se ob majhni spremembi začetnih
podatkov točen rezultat zelo spremeni.

Občutljivost je odvisna le od narave problema in ne od izbrane
numerične metode.

Primer (presečišča premic)
Sistem in njegova perturbacija

x + y = 2 → x + y = 1.9999
x − y = 0 → x − y = 0.0002

ima rešitvi x = y = 1 oz. x = 1.00005 in y = 0.99985. Problem
je neobčutljiv, saj je šlo za spremembo za isti velikostni razred.
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Sistem in njegova perturbacija

x + 0.99y = 1.99 → x + 0.99y = 1.9899
0.99x + 0.98y = 1.97 → 0.99x + 0.98y = 1.9701

ima rešitvi x = y = 1 oz. x = 2.97 in y = −0.99. Problem je
občutljiv, saj je majhna sprememba začetnih podatkov
povzročila veliko spremembo rezultata.
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Na čem temeljijo numerične metode?

▶ Matrike nadomestimo z enostavnejšimi (upoštevamo samo
diagonalni ali zgornjetrikotni del).

▶ Nelinearne probleme nadomestimo z linearnimi (linearna
aproksimacija v točki).

▶ Neskončne procese nadomestimo s končnimi (uporabimo
Taylorjev polinom) .

▶ Neskončno razsežne prostore nadomestimo s končno
razsežnimi (funkcije nadomestimo s polinomi).

▶ Diferencialne enačbe nadomestimo z algebraičnimi
(znebimo se vseh parcialnih odvodov iz enačb).
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Zakaj sploh potrebujemo numerično matematiko?
Znanost, ki temelji na matematičnih izračunih, je neposredno
odvisna od NM.

Nekatere katastrofe so se zgodile zaradi slabega numeričnega
računanja (http://www-users.math.umn.edu/˜arnold//disasters/):

▶ Nesreča Misije Patriot, Zalivska vojna 1991, Savdska
Arabija, 28 žrtev: slaba analiza zaokrožitvenih napak.

Čas zadetka iraške rakete, usmerjene na Savdsko Arabijo, je bil
računan na vsako desetino sekunde v 24-bitnem sistemu. Ker velja

1
10

= 2−4 + 2−5 + 2−8 + 2−9 + 2−12 + 2−13 + 2−16 + 2−17 + 2−20 + 2−21+

+2−24 + 2−25 + 2−28 + . . .︸                               ︷︷                               ︸
zanemarimo

,

je vsako desetinko sekunde napaka 9.5 · 10−8 s. Po 100 urah računanja
je bila napaka 9.5 · 10−8 s · 100 · 60 · 60 · 10 = 0.34 s. Ker je hitrost
rakete 1.676 m/s, je bila pozicija rakete za več kot 500 m napačno
predvidena in je ta ušla radarjem.
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▶ Eksplozija rakete Ariana 5, Francoska Gvajana, 1996:
posledica prekoračitve obsega števil.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

Ob prenovi rakete so ‘pozabili’ nadgraditi uporabljen številski sistem, ki
je horizontalno hitrost meril v 16-bitnem sistemu (1 bit porabimo za
predznak). Največja hitrost v tem sistemu je

20 + 21 + . . .+ 213 + 214 =
215 − 1
2 − 1

= 32767.

Ker je prenovljena raketa po 37 sekundah presegla to hitrost, je prišlo
do zaustavitve motorjev...

▶ Potop naftne ploščadi Sleipner A, Stavanger, Norveška,
1991, miljarda dolarjev škode: nenatančna obdelava
obremenitev pri reševanju PDE-jev.
https://www.youtube.com/watch?v=eGdiPs4THW8

13/170

https://www.youtube.com/watch?v=PK_yguLapgA
https://www.youtube.com/watch?v=W3YJeoYgozw
https://www.youtube.com/watch?v=eGdiPs4THW8


Ponovitev predstavljivih števil

Števila shranjujemo v obliki

x = ±0.d1d2d3 . . . dm × βe,

kjer je
▶ β naravno število (v računalništvu β = 2),

▶ d1d2d3 . . . dm mantisa, e eksponent.

Primer (baza 10)
▶ 1000.12345 zapišemo kot +(0.100012345)10 × 104.

▶ 0.000812345 zapišemo kot +(0.812345)10 × 10−3.
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Prekoračitev in podkoračitev

▶ izračuni preblizu 0 lahko povzročijo podkoračitev

▶ preveliki izračuni lahko povzročijo prekoračitev

▶ prekoračitev je v splošnem hujši problem
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IEEE standard

▶ IEEE Enojna natančnost: števila so predstavljena z 32 biti.

▶ IEEE Dvojna natančnost: števila so predstavljena z 64 biti.
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Kaj so zaokrožitvene napake?
▶ Večine realnih števil ne moremo predstaviti v strojni

aritmetiki⇒ zaokrožujemo in delamo zaokrožitvene
napake.

▶ IEEE standard. . . zaokroži x do najbližjega predstavljivega
števila fl(x). Naj bosta

x− ⩽ x ⩽ x+

najbližji predstavljivi števili števila x. Potem je

fl(x) =
{

x−, če je x bližje x−,
x+, če je x bližje x+.

▶ Kako velika je napaka? Recimo, da je x bližje x−:

x = (0.b1b2b3 . . . bmbm+1)2 × 2e,

x− = (0.b1b2b3 . . . bm)2 × 2e,

x+ =
(
(0.b1b2b3 . . . bm)2 + 2−m)× 2e,
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fl(x) = x(1 + δ), |δ| < 2−m

Absolutna napaka:

x − x− ⩽
x+ − x−

2
= 2e−m−1.

Relativna napaka:

x − x−
x

⩽
2e−m−1

1/2× 2e ⩽ 2−m︸︷︷︸
u

. . . osnovna zaokrožitvena napaka

Torej je

x− = x− − x + x ⩾ −ux + x = x(1 − u).

Podobno
x+ ⩽ x(1 + u).

Sledi
fl(x) = x(1 + δ) , kjer je |δ| < u.
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Kako računamo s predstavljivimi števili?
Za predstavljivi števili x, y in katerokoli od osnovnih operacij
⊙ ∈ {+,−, ·, :} število x ⊙ y ni nujno predstavljivo. Po zgornjem
pa velja

fl(x ⊙ y) = (x ⊙ y)(1 + δ) , kjer je |δ| ⩽ u.

Seštevanje numerično ni asociativna operacija, tj.

(a + b) + c , a + (b + c) :

Primer
1 >> a=rand;b=rand;c=rand;((a+b)+c)-(a+(b+c))

2

3 ans=-2.220446049250313e-16
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Seštevamo od manjših k večjim številom

(a + b) + c = fl(fl(a + b) + c) = fl((a + b)(1 + δ1) + c)

= [(a + b)(1 + δ1) + c] (1 + δ2)

= [(a + b + c) + (a + b)δ1)] (1 + δ2)

= (a + b + c)
[
1 +

a + b
a + b + c

δ1(1 + δ2) + δ2

]
Podobno

a + (b + c) = (a + b + c)
[
1 +

b + c
a + b + c

δ3(1 + δ4) + δ4

]
.

Če pozabimo na člena δ1δ2 in δ3δ4 (Zakaj to lahko naredimo?), dobimo

(a + b) + c = (a + b + c)(1 + ϵ3) kjer je ϵ3 ≈
a + b

a + b + c
δ1 + δ2,

a + (b + c) = (a + b + c)(1 + ϵ4) kjer je ϵ4 ≈
b + c

a + b + c
δ3 + δ4.

Sklep: Ko seštevamo števila, je za čim manjšo napako najbolje
začeti z najmanjšim in prištevati večje.
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Napake pri numeričnem računanju

▶ Neodstranljiva napaka Dn . . . nenatančni začetni podatki.

▶ Napaka metode Dm . . . npr. neskončni proces aproksimiramo s končnim.

▶ Zaokrožitvena napaka Dz . . . računanje s približki in zaokroževanje.

Celotna napaka D je

D = Dn + Dm + Dz .

Primer (sin π
10 računamo v desetiškem sistemu z m = 4)

▶ Dn: fl( π
10 ) = 0.3142 · 100. Ocenimo: |Dn | ≈ sin′( π

10 )|x − fl(x)| ⩽ 1
2 · 10−4.

▶ Dm : sin x ≈ x − x3/6. Ocenimo: |Dm || ⩽ x5/120 = 2.6 · 10−5.

▶ Dz : fl(x − fl(fl(fl(x · x) · x)/6)). Ocenimo: |Dz | ⩽ 3.0 · 10−5.
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Stabilnost meri kakovost metode
Stabilnost metode preverimo z analizo zaokrožitvenih napak.

Vrste napak (x naj bo točna vrednost, x̄ pa približek zanjo):
▶ Prva delitev:

▶ Absolutna napaka: x̄ − x .

▶ Relativna napaka:
x̄ − x

x
.

▶ Druga delitev:
▶ Direktna napaka: Numerična napaka rezultata.

▶ Obratna napaka: Koliko je potrebno spremeniti začetne
podatke, da dobimo izračunan rezultat.

Velja

|direktna napaka| ≈ občutljivost× |obratna napaka| .

Izračunana vrednost je blizu pravi, če rešujemo neobčutljiv
problem z obratno stabilno metodo.
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Odštevanje in seštevanje sta lahko ‘katastrofalni’
odštevanje dveh približno enakih števil

seštevanje dveh približno nasprotnih števil

a = x.xxxx xxxx xxx1
izguba︷     ︸︸     ︷

ssss . . .

b = x.xxxx xxxx xxx0

izguba︷   ︸︸   ︷
tttt . . .

Potem

končna natančnost︷                 ︸︸                 ︷
x.xxx xxxx xxx1

- x.xxx xxxx xxx0
= 0.000 0000 0001 ???? ????
= 1. ???? ????︸       ︷︷       ︸

izguba natančnosti

· β−m

S ponavljanjem se napake seštevajo.
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Primer katastrofalnega odštevanja
Iščemo rešitve kvadratne enačbe

x2 + 2ax + b = 0, kjer je a > 0 in a2 > b.

Rešitev z manjšo absolutno vrednostjo je

x2 =
−2a +

√
4a2 − 4b

2
= −a +

√
a2 − b.

1 k1 := a2

2 k2 := k1 − b
3 k3 :=

√
k2

4 k4 := −a + k3

Če je a2 veliko večji od b, potem ima lahko korak 4 veliko
napako. Možna rešitev:

x2 = (−a +
√

a2 − b) · a +
√

a2 − b
a +
√

a2 − b
=

−b
a +
√

a2 − b
.
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1 k1 := a2

2 k2 := k1 − b
3 k3 :=

√
k2

4 k4 := a + k3

5 k5 :=
−b
k4

1 >> a = 10000;

2 >> b = -1;

3 >> x = -a+sqrt(aˆ2 - b)

4 x = 5.000000055588316e-05

5

6 >> xˆ2 + 2 * a * x +b

7 ans = 1.361766321927860e-08

8

9 >> x = -b/(a+sqrt(aˆ2-b))

10 x = 4.999999987500000e-05

11

12 >> xˆ2 + 2 * a * x +b

13 ans = -1.110223024625157e-16
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Računanje s stabilnejšo obliko
▶ Izračun vrednosti funkcije

f(x) = x(
√

x + 1 −
√

x)

ni stabilen za velike x, ker je
√

x + 1 ≈
√

x. Tej težavi se
lahko izognemo:

f(x) = f(x) ·
√

x + 1 +
√

x√
x + 1 +

√
x
=

x√
x + 1 +

√
x
.

▶ Vrsto
1

1 · 2
+

1
2 · 3

+ . . .+
1

n(n + 1)
,

ki se sešteje v n
n+1 (dokaz: indukcija), je bolje numerično

računati vzvratno kot

1
n · (n + 1)

+
1

(n − 1) · n
+ . . .+

1
1 · 2

.
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Seštevanje in odštevanje v splošnem nista relativno
direktno stabilni operaciji

x, y ∈ R. Računamo približek p za p = x + y.

p = fl(fl(x) + fl(y)) = fl(x(1 + δ1) + y(1 + δ2))

= (x(1 + δ1) + y(1 + δ2)) (1 + δ3)

= x(1 + δ1)(1 + δ3) + y(1 + δ2)(1 + δ3)

= x + y + x(δ1 + δ3 + δ1δ3) + y(δ2 + δ3 + δ2δ3)

kjer je |δi | ⩽ u. Relativna napaka je

|p − p|
|p|

⩽
|x(δ1 + δ3 + δ1δ3) + y(δ2 + δ3 + δ2δ3)|

|x + y |
.

Torej:

Če je x + y blizu 0, potem je
|p − p|
|p|

veliko.
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Množenje (in deljenje) je relativno direktno stabilna
operacija

x, y ∈ R. Računamo približek p za p = x · y.

p = fl(fl(x) · fl(y)) = fl(x(1 + δ1) · y(1 + δ2))

= x(1 + δ1) · y(1 + δ2)(1 + δ3)

= xy(1 + δ1 + δ2 + δ3 + produkti več δ),

kjer je |δi | ⩽ u. Relativna napaka je

|p − p|
|p|

⩽
|xy ||δ1 + δ2 + δ3 + O(u2)|

|xy |
= |δ1 + δ2 + δ3 + O(u2)| .

Torej:

Relativna napaka
|p − p|
|p|

ni odvisna od velikosti produkta xy.

28/170



Večina numeričnih metod ni relativno direktno stabilnih
Vse numerične metode, kjer sta vključeni

operaciji + /−

in kot rezultat lahko dobimo npr. vrednost 0 ali nekje po poti kot
vmesno vrednost skoraj singularno matriko, niso relativno
direktno stabilne, tj. v rezultatu je lahko veliko relativna napaka.

Zato moramo vedno premisliti:
1. V katerih primerih so zgodi velika napaka?
2. Kako nestabilne primere preoblikovati v stabilne?

Primeri takih operacij:
▶ Računanje vrednosti polinoma.
▶ Računanje skalarnega produkta.
▶ Reševanje linearnega sistema.

▶
...
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Drugo poglavje:

Linearni sistemi
Ax = b

▶ Vektorske in matrične norme
▶ Pogojenostno število κ(A)

▶ Direktne metode za reševanje
▶ LU razcep
▶ Pivotna rast ρ(A)
▶ Razcep Choleskega

▶ Predoločeni sistemi
▶ QR razcep
▶ Householderjeva zrcaljenja
▶ SVD razcep
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Vektorska norma je preslikava ∥·∥ : Cn → R, ki zadošča:

1. Pozitivna definitnost: ∥x∥ ⩾ 0 za vsak x ∈ Cn in
∥x∥ = 0⇔ x = 0.

2. Homogenost: ∥αx∥ = |α| ∥x∥ za vsaka α ∈ C in x ∈ Cn

3. Trikotniška neenakost: ∥x + y∥ ⩽ ∥x∥+ ∥y∥ za vsaka x, y ∈ Cn.

Primer
Naj bo x = (x1, . . . , xn) ∈ Cn.
▶ p–norma, p ∈N:

∥x∥p := (|x1|
p + . . .+ |xn|

p)
1/p

.

▶ Supremum norma:

∥x∥∞ = max(|x1|, . . . , |xn|).
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Enotske krožnice v različnih normah
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Matrična norma je preslikava ∥·∥ : Cn×n → R, ki zadošča:

1. Pozitivna definitnost: ∥A∥ ⩾ 0 za vsak A ∈ Cn×n in
∥A∥ = 0⇔ A = 0.

2. Homogenost: ∥αA∥ = |α| ∥A∥ za vsaka α ∈ C in A ∈ Cn×n.

3. Trikotniška neenakost: ∥A + B∥ ⩽ ∥A∥+ ∥B∥ za vsaka
A ,B ∈ Cn×n.

4. Submultiplikativnost: ∥AB∥ ⩽ ∥A∥ ∥B∥ za vsaka A ,B ∈ Cn×n.

Trditev
Naj bo ∥ · ∥∗ vektorska norma na Cn. Potem predpis

∥A∥∗ := max
∥x∥=1

∥Ax∥∗ = max
x,0

∥Ax∥∗
∥x∥∗

.

določa matrično normo na Cn×n.
Dokaz
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Naj bo A =
[
aij
]

i,j=1,...,n ∈ C
n×n matrika. Nekaj matričnih norm:

1. 1–norma: ∥x∥1 =

n∑
i=1

|xi | (1−norma),

∥A∥1 = max
j=1,...,n

( n∑
i=1

|aij |
)
. Dokaz

2. Spektralna norma: Tu λj(X) označuje j–to lastno vrednost matrike
X .

∥A∥2 =
√

max
j=1,...,n

λj(AT A).

3. Frobeniusova norma:

∥A∥F =

√√√√ n∑
i,j=1

|aij |
2.

4. Supremum norma:

∥A∥∞ = max
i=1,...,n

( n∑
j=1

|aij |
)
.
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Zakaj imeti več matričnih norm?

Nekatere norme je bistveno zahtevneje izračunati od ostalih.
Zahtevno je npr. določanje spektralne norme ∥ · ∥2, saj je
računanje lastnih vrednosti zahtevna naloga. Poceni pa je
izračunati 1–normo, ∞–normo in F–normo. Iz različnih ocen,
kot so

1√
n
∥A∥F ⩽ ∥A∥2 ⩽ ∥A∥F ,

1√
n
∥A∥1 ⩽ ∥A∥2 ⩽

√
n∥A∥1,

1√
n
∥A∥∞ ⩽ ∥A∥2 ⩽

√
n∥A∥∞,

pa lahko dobro ocenimo ∥A∥2.
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Občutljivost sistema Ax = b

Zanima nas, kako na spremembo rešitve x vpliva napaka v
začetnih podatkih, tj. napaka v A in b.

Zanima nas torej, kako velik je ∆x v primeru majhnih
perturbacij ∆A in ∆b v rešitvi

(A + ∆A)(x + ∆x) = b + ∆b. (1)

Radi bi ocenili relativno napako ∥∆x∥
∥x∥ , kjer je ∥ · ∥ neka

vektorska norma.

Izberimo vektorsko normo ∥ · ∥. Definirajmo občutljivost oz.
pogojenostno število obrnljive matrike A v normi ∥·∥:

κ(A) = ∥A∥
∥∥A−1∥∥ .
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κ(A) meri občutljivost sistema Ax = b

Izrek
Naj bo A v (1) obrnljiva matrika.

1. Privzemimo, da je ∆A = 0. Potem velja:

∥∆x∥
∥x∥

⩽ κ(A)
∥∆b∥
∥b∥

.

2. Naj bo ∆A , 0, naj za identično matriko I velja ∥I∥ = 1 in
naj bo še

∥∥A−1
∥∥ ∥∆A∥ < 1. Potem velja:

∥∆x∥
∥x∥

⩽
κ(A)

1 − κ(A)
∥∆A∥
∥A∥

(∥∆b∥
∥b∥

+
∥∆A∥
∥A∥

)
.
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Primer
1. Če se spomnimo primera računanja prečišča dveh premic iz prvih

predavanj, lahko vidimo, da je vprašanje občutljivosti glede na začetne
podatke v resnici vprašanje občutljivosti matrik

A1 =

(
1 1
1 −1

)
in A2 =

(
1.00 0.99
0.99 0.98

)
.

Za njiju velja:

κ1(A1) = κF (A1) = κ∞(A1) = 2, κ2(A1) = 1,

κ1(A2) = κ∞(A2) = 3.96 · 104, κ2(A2) = 2, κF (A2) = 3.92 · 104,

kjer κ∗ označuje občutljivost v matrični normi ∗. Kot smo se
geometrijsko prepričali, je drugi sistem res občutljiv, prvi pa ne.

2. Primer zelo občutljive matrike je Hilbertova matrika

Hn =

[
1

i + j − 1

]
i,j
∈ Rn×n.

Ta se pojavi pri iskanju polinoma, ki se v normi ∥f∥ =
√∫1

0 f2dx najbolje

prilega dani funkciji, saj je
∫1

0 x i+jdx = 1
i+j+1 . Velja κ2(H5) ≈ 4.8 · 105, za

naključno 5× 5 matriko pa velja κ2 ≈ 100.
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Primer
1. Če z Matlabom z ukazom \ rešimo sistem H15x = v, kjer je

v = H15 · [1, . . . , 1]T ,

bi morali dobiti za rezultat x = [1, . . . , 1]. Toda

∥x − [1, . . . ,1]T∥2 = 5.3 · 10−3.
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Direktne metode
Ax = b

▶ Gaussova-eliminacija
▶ LU razcep
▶ Pivotiranje
▶ Razcep Choleskega
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Reševanje kvadratnih linearnih sistemov
Linearni sistem n enačb z n neznankami x1, . . . , xn je oblike

a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,
...

...

an1x1 + an2x2 + . . .+ annxn = bn,

kjer so aij , bj realna števila.

V matrični obliki ga zapišemo kot
a11 a12 . . . a1n
a21 a22 . . . a2n
... · · · · · ·

...
an1 an2 . . . ann


︸                             ︷︷                             ︸

A


x1
x2
...

xn


︸     ︷︷     ︸

x

=


b1
b2
...

bn


︸     ︷︷     ︸

b

.
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Geometrijski pomen sistema Ax = b
Naj bodo a(1), a(2), . . . ,a(n) stolpci matrike A, tj.,

a(i) :=


a1i
a2i
...

ani

 ∈ Rn

Linearna kombinacija vektorjev a(1), a(2), . . . ,a(n) je vsak vektor
oblike

x1


a11
a21
...

an1

+ x2


a12
a22
...

an2

+ · · ·+ xn


a1n
a2n
...

ann

 , (2)

kjer so xi ∈ R realna števila.

Zanima nas, ali obstaja linearna kombinacija (2), ki je enaka
vektorju b.
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Sistem Ax = b z vidika numerične matematike

▶ Kako drago je reševanje sistema Ax = b?
cena=število osnovnih računskih operacij (+,−, ·, :).

▶ Kateri problemi in napake se pojavijo med reševanjem
Ax = b?

Ali obstajajo slabe matrike? Kako take matrike identificirati?

Vemo že, da so slabe matrike z velikim κ(A).
Kaj pa, če κ(A) ni velik?

▶ Za katere matrike se da enostavno in poceni rešiti tak
sistem?
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Ponovitev Gaussove eliminacije (GE)
Cilj je pretvoriti sistem v zgornjetrikotnega, nato pa ga rešiti z
obratno substitucijo.

Primer
Rešujemo Ax = b, kjer sta

A =

 −3 2 −1
6 −6 7
3 −4 4

 , b =

 −1
−7
−6

 .

Tvorimo razširjen sistem

Ã =
[

A b
]
=

 −3 2 −1
6 −6 7
3 −4 4

∣∣∣∣∣∣
−1
−7
−6


Prištejemo 2-kratnik prve vrstice drugi in 1-kratnik prve vrstice tretji.

Ã(1) =

 −3 2 −1
0 −2 5
0 −2 3

∣∣∣∣∣∣
−1
−9
−7


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Primer
Odštejemo 1-kratnik druge vrstice od tretje

Ã(2) =

 −3 2 −1
0 −2 5
0 0 −2

∣∣∣∣∣∣
−1
−9

2



Rešimo z obratno substitucijo

x3 =
2

−2
= −1,

x2 =
1

−2
(−9 − 5x3) = 2,

x1 =
1

−3
(−1 − 2x2 + x3) = 2.

V nadaljevanju bomo:
1. Prešteli število potrebnih računskih operacij za Gaussovo

eliminacijo (GE).
2. GE bomo zapisali s pomočjo matričnih množenj.
3. Ukvarjali se bomo s stabilnostjo GE.
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Algoritem GE in cena GE
1 -n × n matrika A = [aij ]ij in n × 1 vektor b = [bi ]i
2 -preoblikujemo [A |b] v zgornjetrikotno z GE
3

4 for k = 1 . . . n − 1
5 for i = k + 1 . . . n
6 xmult = aik/akk
7 aik = 0
8 for j = k + 1 . . . n
9 aij = aij − (xmult)akj

10 end

11 bi = bi − (xmult)bk
12 end

13 end

Izrek
Število računskih operacij (+,−, ·, :) za prevedbo matrike A in
razširjene matrike [A |b] v zgornjetrikotno obliko je

2
3

n3 + O(n2). Dokaz
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Obratna substitucija in število operacij

1 -zgornjetrikotna n × n matrika U = [uij ]i,j, vektor
c = [ci ]i

2 -resimo sistem Ux = c
3

4 xn = cn/unn
5 for i = n − 1 . . . 1
6 s = ci
7 for j = i + 1 . . .n
8 s = s − uijxj
9 end

10 xi = s/uii
11 end

Izrek
Število računskih operacij (+,−, ·, :) za rešitev sistem Ux = c je

n2. Dokaz
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Motivacija za zapis GE v matrični obliki

Videli smo, da je cena pretvorba matrike A oz. sistema [A |b] v
zgornjetrikotno obliko bistveno dražja kot pa obratna
substitucija.

Če bomo v nekem postoku reševali sisteme Ax = b pri fiksni
matriki A , vektor b pa se bo spreminjal, bi bilo iz računskega
vidika bistveno učinkoviteje preoblikovanje matrike A v
zgornjetrikotno obliko narediti samo enkrat.

Ključno v tem procesu je ugotoviti, kako moramo preblikovati
vektor b, ne da bi delali GE na razširjenem sistemu.
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LU razcep matrike A
1 -Vhod: A = [aij ]i,j n × n matrika.
2 -Izhod: Spodnja trikotna matrika L in zgornja

trikotna matrika U, da je A = LU
3 -ℓik v spodnjem algoritmu so elementi pod

diagonalo v L, na diagonali so same 1
4 -preostali elementi aij v zgornjem trikotniku so

elementi matrike U
5

6 for k = 1, . . . , n − 1
7 for i = k + 1, . . . ,n
8 ℓik = aik/akk
9 for j = k + 1, . . . ,n

10 aij = aij − ℓik akj
11 end

12 end

13 end

Izrek
Število računskih operacij (+,−, ·, :) za izračun LU razcepa
matrike A je 2

3n3 + O(n2).
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Prema substitucija in število operacij

1 -Vhod: spodnja trikotna n × n matrika L = [ℓij ]i,j in
vektor b = [bi ]i

2 -Izhod: resitev y sistema Ly = b
3

4 y1 = b1/ℓ11
5 for i = 2 . . .n
6 s = bi
7 for j = 1 . . . i − 1
8 s = s − ℓijyj
9 end

10 yi = s/ℓii
11 end

Izrek
Število računskih operacij (+,−, ·, :) za rešitev sistem Ly = b je

n2.
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Reševanje sistema Ax = b prek LU razcepa:

1. Izračunamo A = LU. Cena: 2
3n3 + O(n2).

2. Rešimo Ly = b s premo subsitucijo, tj. od y1 proti yn.
Cena: n2 − n.

3. Rešimo Ux = y z obratno subsitucijo, t. od xn proti x1.
Cena: n2.

Cena preme substitucije je za n operacij manjša kot cena obratne
substitucije, saj imamo ne diagonali L same enice in prihranimo v vsaki
spremenljivki eno deljenje.
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Reševanje sistema Ax = b prek LU razcepa

Primer

A =


2 1 3 −4
−4 −1 −4 7
2 3 5 −3
−2 −2 −7 9

 , b =


8

−14
7

−16

 .

1. L =


1 0 0 0
−2 1 0 0
1 2 1 0
−1 −1 1 1

, U =


2 1 3 −4
0 1 2 −1
0 0 −2 3
0 0 0 1

.

2. Rešimo Ly = b in dobimo y =
(
8 2 −5 −1

)T .

3. Rešimo Ux = y in dobimo x =
(
1 −1 1 −1

)T .
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Obstoj LU razcepa matrike
V nadaljevanju se bomo ukvarjali z obstojem in stabilnostjo LU
razcepa.

Problematična sta npr. matriki

A =

0 2 3
4 5 6
7 8 9

 , B =

10−17 2 3
4 5 6
7 8 9

 ,

saj je 10−17 pod strojnim ϵ. Da se natančno povedati, kdaj LU razcep
obstaja.

Podmatriki matrike A ∈ Rn×n, zožene na prvih k vrstic in stolpcev, pravimo
k–ta glavna vodilna podmatrika.

Izrek (Obstoj LU razcepa)
Za n × n matriko A sta naslednji trditvi ekvivalentni:

1. LU razcep matrike A obstaja in je enoličen.

2. k-ta glavna vodilna podmatrika matrike A je obrnljiva za
vsak k = 1, . . . , n.
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LU razcep z delnim pivotiranjem

Pri delnem pivotiranju pred eliminacijo v j-tem stolpcu
primerjamo elemente

ajj , aj+1,j , . . . ,anj ,

nato pa zamenjamo j-to vrstico s tisto, ki vsebuje element z
največjo absolutno vrednostjo.

Menjava j-te in k -te vrstice pa je množenje z leve s
permutacijsko matriko Pjk , ki se od identitete razlikuje le v j-ti in
k -ti vrstici, ki sta zamenjani:

Pjk = In − Ejj − Ekk + Ejk + Ekj .

Tu so Eij standardne koordinatne matrike (1 v i-ti vrstici in j-tem
stolpcu in 0 drugje).
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LU razcep z delnim pivotiranjem - algoritem

1 -Vhod: A = [aij ]i,j n × n matrika
2 -Izhod: permutacijska matrika P, spodnja in

zgornja trikotna matrika L in U, da je
PA = LU

3

4 P in L identicni n × n matriki
5 for k = 1, . . . , n − 1
6 poisci q-to in k -to vrstico, ki zadosca

|aqk | = maxk⩽p⩽n |apk |

7 zamenjaj q-to in k -to vrstico v matrikah A ,P
in strogem spodnjem trikotniku L

8 for i = k + 1, . . . ,n
9 ℓik = aik/akk

10 for j = k + 1, . . . ,n
11 aij = aij − ℓik akj
12 end

13 end

14 end
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LU razcep z delnim pivotiranjem
Izrek (O računski zahtevnosti LU razcep z delnim pivotiranjem)
Število računskih operacij (+,−, ·, :) za izračun LU razcepa z
delnim pivotiranjem je 2

3n3 + O(n2).

Dodatno delo pri LU razcepu z delnim pivotiranjem je O(n2) primerjanj in
menjav.

Reševanje Ax = b prek LU razcepa z delnim pivotiranjem:
1. Izračunamo PA = LU. Cena: 2

3n3 + O(n2).

2. Rešimo Ly = Pb s premo subsitucijo. Cena: n2 − n.

3. Rešimo Ux = y z obratno subsitucijo. Cena: n2.

Izrek (Obstoj LU razcepa z delnim pivotiranjem)
Za n × n matriko A sta naslednji trditvi ekvivalentni:

1. LU razcep matrike A z delnim pivotiranjem obstaja.

2. Matrika A je obrnljiva.
56/170



Ax = b prek LU razcepa z delnim pivotiranjem

Primer.

A =


2 1 3 −4
−4 −1 −4 7
2 3 5 −3
−2 −2 −7 9

 , b =


8

−14
7

−16

 .

1. L =


1 0 0 0
− 1

2 1 0 0
1
2 − 3

5 1 0
− 1

2
1
5 − 1

8 1

, U =


−4 −1 −4 7
0 5

2 3 1
2

0 0 − 16
5

58
10

0 0 0 1
8

 ,

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .

2. Rešimo Ly = Pb in dobimo y =
(
−14 0 −9 − 1

8

)T
.

3. Rešimo Ux = y in dobimo x =
(
1 −1 1 −1

)T
.
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LU s kompletnim pivotiranjem

Pri kompletnem pivotiranju pred eliminacijo v j-tem stolpcu poiščemo element
z največjo absolutno vrednostjo v podmatriki A(j : n, j : n) in nato izvedemo
ustrezni menjavi vrstic in stolpcev.

Dodatno delo pri LU razcepu s kompletnim pivotiranjem je O(n3) primerjanj in
menjav. Torej je skupna cena precej dražja od LU razcepa z delnim
pivotiranjem. Ker bomo videli, da je LU razcep z delnim pivotiranjem
statistično numerično stabilen, se v praksi kompletno pivotiranje redko
uporablja.
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Stabilnost LU razcepa matrike A
Sistem Ax = b smo rešili prek LU razcepa in dobili približek x̂. Računali smo
v treh korakih:

1. Izračun LU razcepa: A + E = L̂ Û.
2. Prema substitucija: L̂ ŷ = b.
3. Obratna substitucija: Ûx̂ = ŷ.

Izkaže se, da je (teoretično) nestabilen samo prvi korak.

Spomnimo se, da z u označujemo osnovno zaokrožitveno napako 2−m kjer je
m dolžina mantise. Z |A | = [|aij |]i,j označimo matriko absolutnih vrednosti
vhodov matrike A = [aij ]i,j

Izrek ( Ocena absolutne napake pri izračunu LU razcepa )
Naj bo A ∈ Rn×n obrnljiva matrika, pri kateri se izvede LU
razcep brez pivotiranja. Za izračunani matriki L̂ , Û velja
A = L̂ Û + E, kjer je

|E | ⩽ 3(n − 1)u
(
|A |+ |L̂ ||Û|

)
+ O(u2). Dokaz
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Stabilnost LU razcepa matrike A z delnim pivotiranjem
Iz zgornjega izreka sledi

∥E∥∞ ⩽ 3(n − 1)u ·
(
∥A∥∞ + (∥L̂∥∥Û∥)∞

)
+ O(u2)

⩽ 3(n − 1)u ·
(
∥A∥∞ + ∥L̂∥∞∥Û∥∞

)
+ O(u2)

⩽ 3(n − 1)u∥A∥∞ + 3(n − 1)n∥Û∥∞ + O(u2),

kjer smo v drugi neenakosti upoštevali submultiplikativnost, v tretji neenakosti
pa to, da so pri LU razcepu z delnim pivotiranjem vsi elementi matrike L
navzgor omejeni z 1. Zato velja ∥L∥∞ ⩽ n. Torej je relativna napaka v
supremum normi navzgor omejena z

∥E∥∞
∥A∥∞ ⩽ 3(n − 1)u + 3(n − 1)nu · ∥Û∥∞

∥A∥∞ + O(u2).

Izrek ( Ocena relativne napake pri izračunu LU razcepa )
Pri LU razcepu z delnim pivotiranjem velja ocena relativne
napake:

∥E∥∞
∥A∥∞ ⩽ 3(n − 1)u + 3(n − 1)nu · ∥Û∥∞

∥A∥∞ + O(u2).
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LDL razcep simetrične matrike A
Trditev
Naj bo

A = AT

n × n simetrična matrika in A = LU njen LU razcep. Če je D
diagonalna matrika, katere diagonala se ujema z diagonalo
U-ja, potem je U = DLT in

A = LDLT .

Dokaz. Velja
LU = A = AT = (LU)T = UT LT .

Z množenjem te verige enakosti z leve z L−1 in z desne z (LT )−1 dobimo

U(LT )−1 = L−1UT =: D.

Ker je leva stran zgornja trikotna, desna pa spodnja trikotna, je D diagonalna
matrika. Torej velja

A = LU = LDLT .
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Razcep Choleskega pozitivno definitne matrike A

Izrek (Razcep Choleskega)
Naj bo A simetrična in pozitivno definitna matrika, tj. za vsak
x , 0 velja xT Ax > 0. (ekvivalentno, vsaka lastna vrednost je
> 0) Potem obstaja spodnjetrikotna matrika V, da velja

A = VVT .

Temu razcepu pravimo razcep Choleskega matrike A. Matrika
V je enaka V := LD1/2, kjer sta L in D matriki iz LDL razcepa
matrike A.

Dokaz. Za obstoj je potrebno preveriti samo to, da D1/2 res lahko
izračunamo, tj. da so diagonalni elementi matrike D pozitivni. Da dobimo i-ti
element na diagonali D, izračunamo xT Ax za vektor x = (LT )−1ei , kjer je ei

i-ti stolpec identitete. Ker je A pozitivno definitna, je xT Ax > 0.
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Razcep Choleskega - algoritem

1 A = [aij ]i,j je dana n × n matrika
2 ce se razcep v celoti izvede, je rezultat

spodnjetrikotna matrika V iz A = VVT

3

4 for k = 1, . . . , n

5 vkk =

√
akk −

∑k−1
i=1 v2

ki

6 for j = k + 1, . . . ,n
7 for i = 1, . . . , k − 1
8 ajk = ajk − vjivki
9 end

10 vjk = ajk/vkk
11 end

12 end
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Razcep Choleskega
Izrek (Cena razcepa Choleskega)
Število računskih operacij (+,−, ·, :) za izračun razcepa
Choleskega pozitivno definitne matrike A je n3

3 + O(n2).

Dokaz

Razcep Choleskega tako zahteva samo pol toliko operacij kot
LU razcep in je najcenejši numerični način za ugotavljanje
pozitivne definitnosti simetrične matrike.

Reševanje sistema Ax = b prek razcepa Choleskega:
1. Izračunamo A = VVT . Cena: 1

3n3 + O(n2).

2. Rešimo Vy = b s premo subsitucijo. Cena: n2 + O(n).

3. Rešimo VT x = y z obratno subsitucijo. Cena: n2 + O(n).

Izrek (Stabilnost računanja razcepa Choleskega)
Računanje razcepa Choleskega je numerično stabilna metoda.
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Predoločeni sistemi
Ax = b

▶ Normalni sistem
▶ QR razcep prek Gram-Schmidtove ortogonalizacije
▶ QR razcep prek Householderjevih zrcaljenj

65/170



Predoločeni sistemi
Za matriko A ∈ Rn×m, n ⩾ m, in vektor b ∈ Rn, iščemo vektor
x ∈ Rm, ki zadošča:

Ax = b. (3)

Kadar je n > m, sistemu (3) pravimo predoločen, točna rešitev
pa najverjetneje ne obstaja. Zato nas navadno zanima rešitev,
ki v izbrani vektorski normi ∥ · ∥ minimizira ostanek, tj. želimo,
da je ∥Ax − b∥ čim manjše. Če za ∥ · ∥ izberemo ∥ · ∥2, potem
se problemu reče linearni problem najmanjših kvadratov:

Poišči x ∈ Rm, ki minimizira ∥Ax − b∥2. (4)

Primeri uporabe so:
▶ prilagajanje krivulj,
▶ statistično modeliranje podatkov,
▶ geodetsko modeliranje.
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Primer (Kubična interpolacija)
Dane so točke (x1, y1), . . . , (xn, yn). Iščemo pa kubični polinom

p(x) = a3x3 + a2x2 + a1x + a0,

ki se podatkom najbolje prilega po metodi najmanjših kvadratov. Torej iščemo
koeficiente a0, . . . ,a3 ∈ R, tako da je vsota

n∑
i=1

(a3x3
i + a2x2

i + a1xi + a0 − yi)
2

najmanjša možna.

To lahko napišemo kot sistem
1 x1 x2

1 x3
1

1 x2 x2
2 x3

2
...

...
1 xn x2

n x3
n




a0

a1

a2

a3

 =


y1

y2
...

yn,


ki ga rešujemo po metodi najmanjših kvadratov.
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Reševanje prek normalnega sistema

Trditev
Naj bo rank(A) = m. Rešitev sistema (3) po metodi najmanjših
kvadratov je x ∈ Rm, ki reši t.i. normalni sistem:

AT Ax = AT b. (5)

Dokaz
Težava, ki se pojavi pri reševanju (5), je numerična stabilnost. Računanje
skalarnega produkta v splošnem ni relativno stabilna operacija. Vhodi
matrike AT A pa so ravno skalarni produkti stolpcev A .
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Primer - linearna regresija
Iščemo premico, ki se najbolje prilega podatkom

(x1, y1), . . . , (xn, yn)

po metodi najmanjših kvadratov. Premica je oblike

y = a + bx.

Torej sta spremenljivki a in b. Sistem lahko zapišemo v obliki
1 x1

1 x2
...
1 xn


︸           ︷︷           ︸

A

[
a
b

]
︸   ︷︷   ︸

x⃗

=


y1

y2
...

yn


︸     ︷︷     ︸

b⃗

. (6)

Vemo, da je rešitev (6) enaka

x⃗ = (AT A)−1AT b⃗ =

[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x2
i

]−1 [ ∑n
i=1 yi∑n

i=1 xiyi

]
.
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Reševanje normalnega sistema - razcep Choleskega

Če je matrika A ∈ Rn×m ranga m, potem je matrika AT A
pozitivno definitna (kar pomeni, da so vse lastne vrednosti > 0)
in sistem AT Ax = AT b lahko rešimo s pomočjo razcepa
Choleskega:

1. Izračunaj B = AT A in c = AT b.
Cena: nm2 + O(mn). (Zadosti je računati zgornjetrikotni del AAT .)

2. Izračunaj razcep Choleskega B = VVT . Cena: 1
3 m3 + O(m2).

3. Reši Vy = AT b. Cena: O(m2).

4. Reši VT x = y. Cena: O(m2).

Skupna cena: nm2 + 1
3m3 + O(nm).
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QR razcep

QR razcep matrike A ∈ Rn×m sta ortogonalna matrika
Q ∈ Rn×m (QT Q = Im) in zgornjetrikotna matrika R ∈ Rm×m, ki
zadoščata

A = QR. (7)

Iz (7) sledi, da sta stolpična prostora matrik A in Q enaka. Pogoj
ortogonalnosti matrike Q pa pomeni, da so njeni stolpci normirani (tj. dolžine
1) in paroma pravokotni. Če označimo z a1, . . . ,am in q1, . . . ,qm stolpce
matrik A in Q ter R = [rij ]i,j , potem veljajo zveze:

q1 =
1

r11
a1,

q2 =
1

r22
(a2 − r12q1),

...,

qm =
1

rmm
(am − r1mq1 − . . .− rm−1,mqm−1).

(8)
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Iz (8) lahko izpeljemo enega od načinov za izračun QR razcepa, tj. z uporabo
Gram-Schmidtove ortogonalizacije (GSO)

1 A = [a1, . . . ,am] je n ×m matrika s stolpci a1, . . . ,am
2 Rezultat sta matriki q = [q1, . . . ,qm] in R = [rij ], da je

A = QR
3

4 r11 = ∥a1∥2

5 q1 = 1
r11

a1

6 for j = 2, . . . ,m
7 qj = aj
8 for i = 1, . . . , j
9 rij = qT

i aj
10 qj = qj − rijqi
11 end

12 rjj = ∥qj∥2

13 qj =
1
rjj

qj

14 end

72/170



Uporaba QR razcepa za reševanje sistema (3)

Izrek (Računska zahtevnost GSO)
Število računskih operacij (+,−, ·, :) za izračun QR razcepa z
GSO je

≈ 2nm2.

Dokaz

Trditev (Reševanje sistema prek QR razcepa)
Naj bo A ∈ Rn×m in rank(A) = m. Rešitev sistema (3) po
metodi najmanjših kvadratov je enaka rešitvi zgornjetrikotnega
sistema

Rx = QT b, (9)

kjer je A = QR za ortogonalno matriko Q in zgornjetrikotno
matriko R.
Dokaz
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Householderjeva zrcaljenja (HZ)

Pri GS postopku izračunamo

v ← ak −

k−1∑
i=1

(q⊤
i ak ) qi .

Če je ak skoraj v span{qi}, potem

k−1∑
i=1

(q⊤
i ak ) qi ≈ ak ,

zato je razlika majhna: odštevamo dve veliki, skoraj enaki števili⇒
katastrofalna izguba pomembnih števk.
Zato želimo QR razcep narediti na drugačen način z uporabo ortogonalnih
matrik.
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Zrcaljenje preko hiperravnine, ki je pravokotna na vektor
w ∈ Rm, imenovano Householderjevo zrcaljenje (HZ), je
predstavljeno z matriko

Pw = I −
2
∥w∥22

wwT ,

kjer I = Im.

Trditev (Lastnosti HZ)
▶ Pw je ortogonalna: PT

w = Pw in P2
w = I.

▶ Za x = αw + u, kjer je u ⊥ w, velja Pwx = −αw + u.

Matrike Pw ne izračunamo, ampak zadošča hraniti le vektor w,
saj je

Pwx = x −
2
∥w∥22

(wT x)w.
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Trditev
Naj bosta x, y ∈ Rm s ∥x∥2 = ∥y∥2. Za w = x − y velja

Pwx =
(

I − 2
ww⊤

∥w∥22

)
x = y.

Dokaz: Zapišimo

w⊤x = (x − y)⊤x = ∥x∥22 − x⊤y,

∥w∥22 = ∥x − y∥22 = ∥x∥22 + ∥y∥22 − 2x⊤y = 2(∥x∥22 − x⊤y),

kjer smo uporabili ∥x∥2 = ∥y∥2. Zato je
w⊤x
∥w∥22

= 1
2 in

Pwx = x − 2 · w⊤x
∥w∥22

w = x − w = y.
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Lemma
Naj bo x =

[
x1 x2 · · · xm

]⊤ ∈ Rm, e1 =
[
1 0 · · · 0

]⊤ in
ρ = ∥x∥2. Definirajmo w± = x ∓ ρe1. Tedaj velja

∥w±∥2
2 = 2 ρ

(
ρ∓ x1

)
= 2 ∥x∥2

(
∥x∥2 ∓ x1

)
.

Dokaz:

∥w±∥22 = ∥x ∓ ρe1∥22 = (x1 ∓ ρ)2 +

m∑
i=2

x2
i .

Ker je ρ2 = ∥x∥22 = x2
1 +

∑m
i=2 x2

i , dobimo

∥w±∥22 = x2
1∓2ρx1+ρ2+

m∑
i=2

x2
i = (x2

1 +

m∑
i=2

x2
i )︸             ︷︷             ︸

= ρ2

+ρ2∓2ρx1 = 2ρ2∓2ρx1 = 2ρ(ρ∓x1)

77/170



Za numerično stabilnost izberemo predznak, ki poveča ρ∓ x1: če je x1 < 0,
vzamemo w− = x − ρe1 (izraz ρ− x1 = ρ+ |x1| je večji); če je x1 ⩾ 0,
vzamemo w+ = x + ρe1 (izraz ρ+ x1 je večji).
Izračun QR razcepa prek HZ:
Matriko A preoblikujemo v zgornjetrikotno R z množenjem z leve z m − 1
HZ-ji:

1. S H1 preslikamo prvi stolpec A v večkratnik e1.

2. Drugi stolpec H1A od diagonale navzdol v večkratnik e2 z H̃2 = 1⊕ H2.

3. Tretji stolpec H̃2H1A od diagonale navzdol v večkratnik e3 z
H̃3 = I2 ⊕ H2.

4. Nadaljujemo ta postopek:

R = H̃k H̃k−1 · · · H̃2 H̃1 A , Q = H̃⊤
1 H̃⊤

2 · · · H̃⊤
k .

Za rešitev predoločenega sistema preko metode najmanjših
kvadratov A ∈ Rn×m (n ⩾ m), rešen s Householderjevimi
zrcaljenji (A = QR, Q⊤b = y, Rx = y), je cena ≈ 2nm2 − 2

3m3.
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Izračun QR razcepa prek HZ - grafično

A =


x x x x x
x x x x x
x x x x x
x x x x x
x x x x x

 →︸︷︷︸
H1

A1 =


x x x x x
0 x x x x
0 x x x x
0 x x x x
0 x x x x



→︸︷︷︸1 0
0 H2


A2 =


x x x x x
0 x x x x
0 0 x x x
0 0 x x x
0 0 x x x

 →︸︷︷︸I2 0
0 H3


A3 =


x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 x x



→︸︷︷︸I3 0
0 H4


A4 =


x x x x x
0 x x x x
0 0 x x x
0 0 0 x x
0 0 0 0 x

 .
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Primerjava dveh :

Cholesky: ≈ nm2 + 1
3m3 ,

QR (Householder): ≈ 2nm2 − 2
3m3 .

Zakaj Householder QR namesto Cholesky pri reševanju
normalnega sistema?:
▶ κ(A⊤A) = κ(A)2 ⇒ relativna napaka ∼ κ(A)2ε. Pri QR je

∼ κ(A)ε.
▶ Stabilnost: za Householder QR velja Q⊤Q = I + O(ε).
▶ Izognemo se tvorjenju A⊤A : manj kopičenja

zaokrožitvenih napak
Če je n = m dobimo pri QR (Householder) 4

3n3 (tukaj boljše
uporabiti LU razcep z delnim pivotiranjem)
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Reševanje nelinearnih
enačb in optimizacija

∗ f(x) = 0
∗ fi(x1, x2, . . . , xn) = 0, i = 1, . . . , n

∗ min{f(x) : x ∈ K ⊆ Rn}
▶ Ena enačba v eni spremenljivki: Bisekcija, tangentna metoda,

sekantna metoda, navadna iteracija
▶ Sistem n enačb v n spremenljivkah: Newtonova in Jacobijeva

iteracija
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Motivacija

Problem: Naj bo dana funkcija f(x). Poišči x, ki zadošča

f(x) = 0.

▶ Nelinearni sistemi niso tako enostavno rešljivi kot sistemi
linearnih enačb.

▶ Ničel polinoma stopnje 5 ne moremo zapisati analitično.

▶ Kako reševati take probleme? Z iterativnim postopkom, pri
čemer se rešitvam čim bolj približamo.
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Osnovna strategija reševanja

1. Skiciraj funkcijo.
▶ Postavimo začetno domnevo, kaj je lahko ničla.

▶ Ničla x gotovo obstaja na intervalu [a, b], če imata f(a) in
f(b) različna predznaka in je funkcija f zvezna na [a, b].

▶ Toda: Sprememba predznaka funkcije ne pomeni vedno,
da je na tem intervalu ničle, kajti lahko imamo na intervalu
singularnost:

2. Začnemo z začetno domnevo in uporabimo nek iteracijski
algoritem.
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Konvergenčni kriteriji za x

Zaustavitveni kriterij je odvisen od narave problema, ki ga
rešujemo:

▶ Lahko nas zanima, kdaj velja

|xk − xk−1| < toleranca.

▶ Lahko pa nas zanima, kdaj velja

|f(xk )| < toleranca.

▶ Še najbolje pa je zahtevati izpolnjenost obeh pogojev
hkrati.

f (x)

true root

tolerance
on x

tolerance
on f (x) x
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Primerjava obeh konvergenčnih kriterijev
Če je f ′(x) majhen v okolici ničle, je lažje zadostiti toleranci na
funkcijsko vrednost.

f (x)

x

Če je f ′(x) velik v bližini ničle, je možno zadostiti toleranci na
dolžino intervala, četudi je |f(x)| še vedno velik.

f (x)

x
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Povezava med obema kriterijama

Vprašanje: Kako sta kriterija na x in f(x) povezana med sabo?

Ko xa in xb konvergirata proti x∗, gre razmerje

f(xb) − f(xa)

xb − xa
proti f ′(x∗)

Zato lahko pričakujemo, da velja

|f(xb) − f(xa)| ≈ |f ′(x∗)||xb − xa |,

ko xa in xb konvergirata proti x∗.

Zaključek: |f ′(x∗)| določa povezavo med kriterijema.
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Bisekcija
Razpolovišče začetnega
intervala [a, b] je točka

xm =
1
2
(a + b).

Postopek:
1. Poišči razpolovišče.

2. Izmed dveh možnih
intervalov izberi tistega,
kjer ima funkcija različno
predznačeni krajišči.

3. Nadaljujemo s prvim
korakom.

4. Ustavimo se, ko je
interval krajši od naprej
predpisane tolerance.

87/170



Algoritem za bisekcijo

1 Vhod: funkcija f, krajisci a, b, toleranca tol
2 Izhod: priblizek x∗ za f(x) = 0 z |x − x∗| < tol
3

4 for k = 1, 2, . . .
5 xm = a + (b − a)/2
6 if sign (f(xm)) = sign (f(a))
7 a = xm
8 else

9 b = xm
10 end

11 if |b-a|<tol, stop

12 end
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Hitrost konvergence in računska zahtevnost
Naj bo δn velikost intervala po n-tem koraku bisekcije. Potem
velja

δ0 = b−a, δ1 =
1
2
δ0, δ2 =

1
2
δ1 =

1
4
δ0, . . . , δn =

(
1
2

)n

δ0

=⇒ δn

δ0
=

(
1
2

)n

= 2−n ali n = log2

(
δn

δ0

)

n
δn

δ0

število izračunov
funkcijskih vrednosti

5 3.1× 10−2 7

10 9.8× 10−4 12

20 9.5× 10−7 22

30 9.3× 10−10 32

40 9.1× 10−13 42

50 8.9× 10−16 52
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Navadna iteracija
Pri metodi navadne iteracije osnovno enačbo

f(x) = 0

preoblikujemo v ekvivalentno

x = g(x)

in izvajamo iteracijo
xr+1 = g(xr)

pri izbranem začetnem približku x0.
Nekatere možne izbire za iteracijsko funkcijo g so denimo

g(x) = x − f(x)

g(x) = x − Cf(x), C , 0

g(x) = x − h(x)f(x), h(x) , 0.
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Konvergenco navadne iteracije opisuje naslednji izrek.

Izrek
Naj iteracijska funkcija g na intervalu I = [α− δ,α+ δ] zadošča
pogoju

|g(x) − g(y)| ⩽ m |x − y |, x, y ∈ I, 0 ⩽ m < 1.

Potem za vsak x0 ∈ I zaporedje

xr+1 = g(xr), r = 0, 1, . . .

konvergira k α. Velja

|xr − α| ⩽ mr |x0 − α|

in
|xr+1 − α| ⩽

m
1 − m

|xr − xr−1|.
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Posledica
Naj bo g(α) = α in g zvezno odvedljiva pri α. Če je |g ′(α)| < 1,
potem obstaja taka okolica I za α, da za vsak x0 ∈ I zaporedje

xr+1 = g(xr), r = 0, 1, . . .

konvergira k α. O hitrosti konvergence v bližini α odloča število
g ′(α).

Definicija
Naj zaporedje (xr)

∞
r=0 konvergira k α. Pravimo, da je red

konvergence enak p, če obstajata konstanti C1,C2 > 0, da za
dovolj pozne člene zaporedja velja

C1|xr − α|p ⩽ |xr+1 − α| ⩽ C2|xr − α|p.
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Lema
Naj bo iterativna funkcija g v okolici negibne točke α = g(α)
p-krat zvezno odvedljiva in naj bo∣∣g(k)(α)

∣∣ = 0 za k = 1, 2, . . . , p − 1, ter g(p)(α) , 0.

Potem ima iterativna metoda

xr+1 = g(xr), r = 0, 1, . . . ,

v bližini rešitve α red konvergence p.
Posebni primeri konvergence so:
▶ p = 1: linearna (na vsakem koraku pridobimo konstantno

mnogo novih točnih decimalk),
▶ p = 2: kvadratična (na vsakem koraku se število točnih

decimalk podvoji),
▶ p = 3: kubična (na vsakem koraku se število točnih

decimalk potroji),
▶ 1 < p < 2: superlinearna (hitrejša od linearne in

počasnejša od kvadratične).
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Primer
Ena od možnih iteracijskih funkcij za računanje

√
a, a > 0, je

g(x) =
x2 + a

2x
.

Očitno je g(
√

a) =
√

a, g ′(
√

a) = 0 in g ′′(
√

a) , 0. Iterativna
metoda

xr+1 = g(xr)

ima torej v bližini
√

a kvadratično konvergenco.
Izberimo a = 10 in x0 = 3. Potem je

r xr
0 3.00000000
1 3.16666667
2 3.16228070
3 3.16227766

V zadnjem stolpcu so točne decimalke, ki se na vsakem koraku
približno podvojijo, kar potrjuje kvadratično konvergenco.
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Tangentna metoda

Ideja za tangentno metodo je preprosta: nov približek je
presečišče tangente v prejšnjem približku z abscisno osjo.
Če torej rešujemo enačbo

f(x) = 0,

se zaporedje približkov glasi

xr+1 = xr −
f(xr)

f ′(xr)
, r = 0, 1, . . .

Očitno je to poseben primer navadne iteracije z iteracijsko
funkcijo

g(x) = x −
f(x)
f ′(x)

.
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Za konvergenco tangentne metode velja:
Če je ničla α funkcije f enostavna, je konvergenca vsaj
kvadratična. Kvadratična je, če je f ′′(α) , 0, sicer je vsaj
kubična.

Izrek
Naj bo α enostavna ničla dvakrat zvezno odvedljive funkcije f .
Potem obstajata okolica I točke α in konstanta C, da tangentna
metoda konvergira za vsak x0 ∈ I in približki xr zadoščajo oceni

|xr+1 − α| ⩽ C
(
xr − α

)2
.

Izrek
Naj bo f na I = [a,∞) dvakrat zvezno odvedljiva, naraščajoča
in konveksna funkcija, ki ima ničlo α ∈ I. Potem je α edina ničla
funkcije f na I in za vsak x0 ∈ I tangentna metoda konvergira k
α.
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Sekantna metoda

Pri tangentni metodi poleg vrednosti potrebujemo tudi odvod.
Če ta ni na voljo ali ga težko računamo, ga aproksimiramo z
diferencialnim kvocientom

f(xr) − f(xr−1)

xr − xr−1
.

Tako dobimo sekantno metodo

xr+1 = xr −
f(xr)(xr − xr−1)

f(xr) − f(xr−1)
, r = 0, 1, . . .

Izkaže se, da je red konvergence zanjo približno p ≈ 1.62
(superlinearna).
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Primerjava metod: zahteve

▶ Bisekcija
▶ Začetni interval [a, b] z f(a) · f(b) < 0.
▶ Ne potrebuje odvoda.

▶ Tangentna metoda
▶ Potrebuje začetni približek x0.
▶ Potrebuje odvod f ′(x).

▶ Sekantna metoda
▶ Potrebuje dve začetni točki x0, x1.
▶ Odvod nadomesti s sekanto.
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Primerjava metod: Hitrost konvergence in robustnost
Hitrost konvergence
▶ Bisekcija: linearna, počasna, dolžina intervala se

prepolovi v vsakem koraku.
▶ Tangentna: tipično kvadratna konvergenca (zelo hitra, če

je x0 blizu ničle).
▶ Sekantna: nad-linearna konvergenca (red ≈ 1,618),

hitrejša od bisekcije, nekoliko počasnejša od tangentne
metode.

Robustnost
▶ Bisekcija: zelo robustna, konvergira, če je f zvezna in

f(a) · f(b) < 0.
▶ Tangentna: občutljiva na slab x0 ali majhen f ′(x), lahko

divergira.
▶ Sekantna: manj robustna kot bisekcija, bolj kot tangentna;

možne težave, če je f(xk ) − f(xk−1) zelo majhen.
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Sistemi nelinearnih enačb
Rešujemo sistem nelinearnih enačb:

f1(x1, . . . , xn) = 0,
f2(x1, . . . , xn) = 0,

...

fn(x1, . . . , xn) = 0.

Če definiramo
f := (f1, . . . , fn) : Rn → Rn,

potem lahko sistem na kratko zapišemo kot

f(x) = 0.

Newtonova metoda: posplošitev tangentne metode,
Jacobijeva iteracija: posplošitev navadne iteracije.
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Newtonova iteracija
Pri Newtonovi iteraciji tvorimo zaporedje približkov

x(r+1) = x(r) − Jf (x(r))−1f(x(r)) ,

kjer je Jf (x(r)) matrika prvih odvodov preslikave f , ki ji pravimo
Jacobijeva matrika:

Jf (x) =


∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fn
∂x1

· · · ∂fn
∂xn

 (x).

V praksi pa ne računamo inverza Jf (x(r))−1, ampak namesto
tega rešimo sistem

Jf (x(r))∆x(r) = −f(x(r)),

x(r+1) = x(r) + ∆x(r).
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Izpeljava:
1. Funkcije fi razvijemo v Taylorjevo vrsto:

fi(x + ∆x) = fi(x) +
n∑

k=1

∂fi
∂xk

(x)∆xk + . . . , i = 1, . . . , n.

2. Zanemarimo člene višjega reda in enačimo fi(x + ∆x) = 0.

3. Dobimo zgornji sistem.
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Jacobijeva iteracija

1. Sistem f(x) = 0 preoblikujemo v ekvivalentno obliko

g(x) = x,

kjer je g : Rn → Rn.

2. Izberemo začetni približek

x(0) ∈ Rn.

3. Računamo zaporedje približkov

x(r+1) = g(x(r)).
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Izrek (Prvi konvergenčni izrek Jacobijeve iteracije)
Naj g : Rn → Rn na nekem območju Ω ⊆ Rn zadošča:

1. g(Ω) ⊆ Ω.

2. ∥g(x) − g(y)∥ ⩽ m∥x − y∥ za vsaka x, y ∈ Ω in nek 0 ⩽ m < 1.

Enačba
g(x) = x

ima na območju Ω eno samo rešitev ξ in zaporedje x(r+1) konvergira proti ξ
za poljuben začetni približek x(0) ∈ Ω. Velja še

∥x(r+1) − ξ∥ ⩽ mr

1 − m
∥x(1) − x(0)∥.

Izrek (Drugi konvergenčni izrek Jacobijeve iteracije)
Naj g : Rn → Rn zvezno odvedljiva v negibni točki ξ in naj bo ∥Jg(ξ)∥ < 1.
Potem obstaja zaprta okolica Ω ⊆ Rn fiksne točke ξ, tako da zaporedje x(r+1)

konvergira proti ξ za poljuben začetni približek x(0) ∈ Ω.
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Čeprav obstajajo izreki o konvergenci Newtonove metode
(denimo Kantorovičev), je njihove predpostavke v praksi težko
preveriti. Konvergenco ponavadi zagotovi že dober začetni
približek.
Kadar je sistem enačb velik, je z Newtonovo metodo veliko
dela. Pohitrimo jo lahko tako, da Jacobijevo matriko na novo
računamo samo na vsakih nekaj korakov. Taki metodi rečemo
kvazi-Newtonova metoda.
Znane so tudi variante, ko Jacobijevo matriko ocenimo brez
poznavanja parcialnih odvodov (Broydenova metoda).
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Polinomska interpolacija in
aproksimacija
∗ Poišči polinom p, da je
p(xi) = yi, i = 0, 1, . . . ,n.

∗ Poišči polinom p stopnje k , da je∑n
i=0 ∥f(xi) − p(xi)∥2 minimalno.

▶ Interpolacija v standardni bazi
▶ Interpolacija v Lagrangeovi bazi
▶ Interpolacija v Newtonovi bazi
▶ Polinomska aproksimacija, ortogonalni polinomi
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Uvod v interpolacijo in aproksimacijo
Cilj: Aproksimirati želimo funkcijo f(x) z lažjo funkcijo g(x).

Tipi aproksimativnih funkcij: Polinomi, odsekoma polinomske
funkcije, racionalne funkcije, trigonometrične funkcije,
eksponentna funkcija, itd.

Vprašanje: Kako aproksimirati f(x) z g(x)? V kakšnem smislu
je aproksimacija dobra? Imamo več kriterijev:

1. Interpolacija: g(x) mora imeti iste vrednost kot f(x) na dani
množici točk.

2. Metoda najmanjših kvadratov: g(x) se mora čim bolj
prilegati f(x) v smislu 2-norme, tj.∫b

a
|f(t) − g(t)|2 dt mora biti čim manjše.

3. Aproksimacija Čebiševa: g(x) se mora čim bolj prilegati
f(x) v smislu supremum norme, tj.

minimizirati želimo max
t∈[a,b]

|f(t) − g(t)|.
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Interpolacijski polinom v standardni bazi
Dani so naslednji podatki:

n + 1 točk x0, . . . , xn in vrednosti y0, . . . , yn.

Iščemo polinom

p(x) = a0 + a1x + a2x2 + · · ·+ anxn,

stopnje n, ki zadošča

p(x0) = y0, p(x1) = y1, . . . , p(xn) = yn. (10)
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Dobimo sistem

a0 + a1x0 + a2x2
0 + · · ·+ anxn

0 = y0,

a0 + a1x1 + a2x2
1 + · · ·+ anxn

1 = y1,

...

a0 + a1xn + a2x2
n + · · ·+ anxn

n = yn.

(11)

Polinomu p(x) pravimo interpolacijski polinom.

V matrični obliki lahko sistem (11) zapišemo kot

Ax = b,

kjer je

A =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
1 x2 x2

2 . . . xn
2

...
...

1 xn x2
n . . . xn

n

 , x =


a0
a1
a2
...

an

 , b =


y0
y1
y2
...

yn

 .
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Matriki A pravimo Vandermondova matrika na točkah
x0, . . . , xn. Velja

det(A) =
∏

0⩽j<i⩽n

(xi − xj)

Posledica (O obstoju in enoličnosti interpolacijskega polinoma)
▶ Če so točke xi , i = 0, . . . , n, paroma različne, ima sistem

enolično rešitev.
▶ Polinom stopnje največ n skozi n + 1 točk je en sam.

Vprašanje:
1. Kako računsko zahtevno je reševanje sistema (11)?
2. Ali je sistem (11) numerično občutljiv?

Odgovor:
1. Računanje interpolacijskega polinoma s pomočjo

Vandermondove matrike ni poceni (2
3n3 + O(n2) operacij).

2. Sistem je lahko že pri majhnem številu točk (npr. 10) zelo
občutljiv za numerične napake.
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Interpolacijski polinom: Lagrangeova in Newtonova
baza

Namesto uporabe standardne baze

1, x, x2, . . . , xn

je bolje uporabiti eno od naslednjih baz:

▶ Lagrangeova baza:
(x−x1)···(x−xn)
(x0−x1)···(x0−xn)

, (x−x0)(x−x2)···(x−xn)
(x1−x0)(x1−x2)···(x1−xn)

, . . . , (x−x0)···(x−xn−1)
(xn−x0)···(xn−xn−1)

.

▶ Newtonova baza:
1, x − x0, (x − x0)(x − x1), . . . , (x − x0) · · · (x − xn−1).

Obe zgornji bazi sta stabilni, Newtonova pa je cenejša za
računanje v primeru dodajanja novih interpolacijskih točk.
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Interpolacijski polinom v Lagrangeovi bazi
Primer
Poišči polinom najnižje stopnje, ki interpolira naslednji točki:

x 1.4 1.25
y 3.7 3.9

.

Dobimo

p1(x) =
(

x − 1.25
1.4 − 1.25

)
3.7 +

(
x − 1.4

1.25 − 1.4

)
3.9 = 3.7 −

4
3
(x − 1.4)

Kaj smo naredili? Zapisali smo p(x) v obliki

p(x) =
(

x − x1

x0 − x1

)
︸          ︷︷          ︸

ℓ0(x),
ℓ0(x0)=1,ℓ0(x1)=0

y0 +

(
x − x0

x1 − x0

)
︸          ︷︷          ︸

ℓ1(x),
ℓ1(x0)=0,ℓ1(x1)=1

y1
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Danih imamo n + 1 točk

(x0, y0), (x1, y1), . . . , (xn, yn).

Cilj je najti Lagrangeove bazne polinome stopnje največ n , ki
zadoščajo

ℓi(xj) =

{
0, j , i,
1, j = i.

Torej je

ℓi(x) = Ci︸︷︷︸
konstanta

·
∏
j,i

(x − xj), i = 0, . . . , n.

i–ti Lagrangeov bazni polinom je

ℓi(x) =
n∏

j=0,j,i

x − xj

xi − xj
, i = 0, . . . , n.

Interpolacijski polinom v Lagrangeovi obliki je

p(x) =
n∑

i=0

ℓi(x)yi
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Primer
Poišči enačbo parabole v Lagrangeovi obliki, ki gre skozi točke

(1, 6), (−1, 0), (2, 12).

ℓ0(x) =
(x−x1)(x−x2)
(x0−x1)(x0−x2)

=
(x+1)(x−2)

(2)(−1)

ℓ1(x) =
(x−x0)(x−x2)
(x1−x0)(x1−x2)

=
(x−1)(x−2)
(−2)(−3)

ℓ2(x) =
(x−x0)(x−x1)
(x2−x0)(x2−x1)

=
(x−1)(x+1)

(1)(3)

p2(x) = y0ℓ0(x) + y1ℓ1(x) + y2ℓ2(x)
= −3(x + 1)(x − 2) + 0(x − 1)(x − 2) + 4(x − 1)(x + 1).
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Interpolacijski polinom v Newtonovi bazi
Newtonov interpolacijski polinom na točkah x0, x1, x2, . . . , xn je
oblike

pn(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1) + . . .

+ cn(x − x0)(x − x1) · · · (x − xn−1).

Newtonovi bazni polinomi so

1, x − x0, (x − x0)(x − x1), . . . ,
n−1∏
i=0

(x − xi).

Newtonova baza proti Lagrangeovi bazi:

Prednost Newtonove baze pred Lagrangeovo je v tem, da se z
dodajanjem novih točk xn+1, . . . , xn+m vsi že izračunani
koeficienti c0, . . . , cn ne spremenijo.

V primeru zlepkov, ko imamo v naprej določen n, so
Lagrangeovi polinomi primernejši, saj imamo koeficiente že
dane. 115/170



Interpolirajmo podatke (x0, y0), (x1, y1), (x2, y2) v Newtonovi
obliki.

Poiskati moramo koeficiente c0, c1 in c2 v polinomu

p2(x) = c0 + c1(x − x0) + c2(x − x0)(x − x1).

Iz n podatkov dobimo sistem n linearnih enačb v neznanih
koeficientih:

x0 : y0 = c0 + 0 + 0
x1 : y1 = c0 + c1(x1 − x0) + 0
x2 : y2 = c0 + c1(x2 − x0) + c2(x2 − x0)(x2 − x1)

Ali v matrični obliki:1 0 0
1 x1 − x0 0
1 x2 − x0 (x2 − x0)(x2 − x1)

c0
c1
c2

 =

y0
y1
y2


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Ker je matrika spodnje trikotna, potrebujemo samo O(n2)
operacij:

c0 = y0 = f(x0),

c1 =
y1 − c0

x1 − x0
=

f(x1) − f(x0)

x1 − x0
,

c2 =
y2 − c0 − (x2 − x0)c1

(x2 − x1)(x2 − x0)

=
f(x2) − f(x0) − (x2 − x0)

f(x1)−f(x0)
x1−x0

(x2 − x1)(x2 − x0)

=

f(x2)−f(x1)
x2−x1

−
f(x1)−f(x0)

x1−x0

x2 − x0
.
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Deljena diferenca f [x0, . . . , xk ]

Iz zgornjega primera opazimo naslednji vzorec. Pojavljajo se
izrazi oblike:

f(xj) − f(xi)

xj − xi
. (12)

Če izraz (12) označimo z oglatimi oklepaji kot f [xi , xj ], potem bi
na našem primeru dobili:

c0 = f(x0), c1 = f [x0, x1], c2 =
f [x1, x2] − f [x0, x1]

x2 − x0
.

To se da posplošiti do rekurzivnega računanja polinomov v
Newtonovi obliki.

Deljena diferenca f [x0, . . . , xk ] je vodilni koeficient (pri xk )
interpolacijskega polinoma stopnje največ k , ki se z f ujema v
točkah x0, . . . , xk .
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Izrek (O koeficientih Newtonovega interpolacijskega polinoma)

1. Koeficienti Newtononovega interpolacijskega polinom pn
stopnje največ n, ki se z f ujema v točkah x0, . . . , xn, so
enaki

ci = f [x0, x1, . . . , xi ], i = 0, . . . , n.

2. Deljene diference povezuje formula

f [x0, . . . , xn] =
f [x1, . . . , xn] − f [x0, . . . , xn−1]

xn − x0
.

Dokaz
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Primer. Konstruirajmo deljene diference za podatke (1, 3),
(3

2 ,
13
4 ), (0,3), (2, 5

3).

Iz tabele deljenih diferenc preberimo interpolacijski polinom.
x f [·] f [·, ·] f [·, ·, ·] f [·, ·, ·, ·]
1 3

1
2

3
2

13
4

1
3

1
6 -2

0 3 -5
3

-2
3

2 5
3

Interpolacijski polinom je tako

p2(x) = 3 +
1
2
(x − 1) +

1
3
(x − 1)

(
x −

3
2

)
− 2(x − 1)

(
x −

3
2

)
x.

Če uporabimo spodnjo stranico trikotnika, pa dobimo p2(x)
izražen v drugi Newtonovi bazi:

p2(x) =
5
3
−

2
3
(x − 2) −

5
3
(x − 2)x − 2(x − 2)x

(
x −

3
2

)
.
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Višanje stopnje aproksimacije
· · · ne izboljša vedno aproksimacije funkcije s polinomom.

Znan je Rungejev primer, ko funkcijo

f(x) =
1

1 + x2

interpoliramo na intervalu [−5, 5] z ekvidistantnimi točkami, tj.

x0 = −5, x1 = −5 + 10 · 1
n
, . . . , xn−1 = −5 + 10 · n − 1

n
, xn = 5.

Pričakujemo, da se bo interpolacijski polinom vse bolj prilegal
naši funkciji. Izkaže pa se, da temu ni tako. Če interpoliramo v
točkah Čebiševa

xi = 5 cos

(
π

2(i − 1)(n + 1)

)
, i = 0, . . . , n

pa z višanjem stopnje res dobimo boljše prileganje.
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Napaka polinomske interpolacije
Ponavadi nas zanima razlika med vrednostjo funkcije f in
vrednostjo interpolacijskega polinoma pn v neki točki t :

en(t) = pn(t) − f(t).

Naj bo qn+1 interpolacijski polinom funkcije f skozi točke
x0, . . . , xn in t :

qn+1(x) = pn(x) + f [x0, x1, . . . , xn, t ] ·
n∏

i=0

(x − xi).

Iz enakosti f(t) = qn+1(t), sledi

en(t) = pn(t) − f(t) = −f [x0, x1, . . . , xn, t ]
n∏

i=0

(t − xi).

Za oceno napako moramo oceniti še vrednost f [x0, x1, . . . , xn, t ].
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Izrek (O deljenih diferencah)

f [x0, x1, . . . , xn, t ] =
f (n+1)(ξ)

(n + 1)!
za nek ξ ∈ [a,b].

Dokaz

Izrek (Napaka polinomske interpolacije)
Naj bo f vsaj (n + 1)-krat zvezno odvedljiva na intervalu [a,b] in
naj bo pn interpolacijski polinom stopnje največ n skozi točke xi ,
i = 0, . . . , n, ki vse ležijo na intervalu [a, b]. Potem je za vsak
x ∈ [a, b]

f(x) − pn(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0) · · · (x − xn),

kjer ξ leži na intervalu [a, b].

Če znamo odvod f (n+1) na intervalu, ki nas zanima, omejiti,
lahko dobimo uporabno oceno.
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Aproksimacija po metodi najmanjših kvadratov
Za funkcijo, podano v n točkah

(x0, y0), . . . , (xn, yn),

iščemo polinom pk stopnje k ⩽ n, za katerega ima izraz

ELSQ =

√√√√ n∑
i=0

(pk (xi) − yi)2

najmanjšo vrednost. Če zapišemo na dolgo:

ELSQ =

√√√√√ n∑
i=0

(a0 + a1xi + . . .+ ak xk
i︸                          ︷︷                          ︸

pk (xi)

−yi)2.

Torej iščemo ekstrem funkcije več spremenljivk. Iz analize
vemo, da je potreben pogoj za ekstrem

∂ELSQ

∂a0
=

∂ELSQ

∂a1
= . . . =

∂ELSQ

∂ak
= 0.
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Naj bo

s1 = x0+. . .+xn, s2 = x2
0+. . .+x2

n , . . . , s2k = x2k
0 +. . .+x2k

n .

Dobimo normalni sistem:
n s1 s2 . . . sk
s1 s2 s3 . . . sk+1
s2 s3 s4 . . . sk+2
...

...
...

...
...

sk sk+1 sk+2 . . . s2k




a0
a1
a2
...

ak

 =



∑n
i=0 yi∑n

i=0 yixi∑n
i=0 yix2

i
...∑n

i=0 yixk
i

 ,

ki pa je pri velikem številu točk lahko numerično slabo pogojen.
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Aproksimacija po metodi najmanjših kvadratov
Do ekvivalentnega sistema bi prišli tudi z zapisamo prvotnega sistema v
obliki Ax = b in mu priredili normalni sistem AT Ax = AT b:

a0 + a1

m∑
i=1

xi + . . .+ an

m∑
i=1

xn
i =

m∑
i=1

f(xi),

a0

m∑
i=1

xi + a1

m∑
i=1

x2
i + . . .+ an

m∑
i=1

xn+1
i =

m∑
i=1

f(xi)xi ,

a0

m∑
i=1

x2
i + a1

m∑
i=1

x3
i + . . .+ an

m∑
i=1

xn+2
i =

m∑
i=1

f(xi)x2
i ,

...

a0

m∑
i=1

xn
i + a1

m∑
i=1

xn+1
i + . . .+ ak

m∑
i=1

x2n
i =

m∑
i=1

f(xi)xn
i .

Ta sistem lahko rešimo z Gaussovo eliminacijo, vendar je lahko pri veliko
točkah slabo pogojen. Cilj je problem preoblikovati v ekvivalentnega, vendar
bolje pogojenega. Rešitev leži v uporabi baze ortogonalnih polinomov.
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Zamenjava baze prostora polinomov
Če bi namesto baze {1, x, . . . , xn} vzeli novo bazo polinomov

{g0(x), g1(x), . . . , gn(x)},

bi dobili sistem linearnih enačb:

a0

m∑
i=1

g2
0(xi) + a1

m∑
i=1

g0(xi)g1(xi) + . . .+ an

m∑
i=1

g0(xi)gn(xi) =

m∑
i=1

f(xi)g0(xi),

a0

m∑
i=1

g1(xi)g0(xi) + a1

m∑
i=1

g2
1(xi) + . . .+ an

m∑
i=1

g1(xi)gn(xi) =

m∑
i=1

f(xi)g1(xi),

a0

m∑
i=1

g2(xi)g0(xi) + a1

m∑
i=1

g2(xi)g1(xi) + . . .+ an

m∑
i=1

g2(xi)gn(xi) =

m∑
i=1

f(xi)g2(xi),

...

a0

m∑
i=1

gn(xi)g0(xi) + a1

m∑
i=1

gn(xi)g1(xi) + . . .+ an

m∑
i=1

g2
n(xi) =

m∑
i=1

f(xi)gn(xi).

Želeli bi izbrati bazo, v kateri bo ta sistem diagonalen. Iščemo torej polinome
gj , za katere velja

m∑
i=1

gj(xi)gk (xi) = 0 za j , k .
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Zgornji sistem lahko zapišemo tudi v matrični obliki:

A =


⟨g0, g0⟩ ⟨g0, g1⟩ . . . ⟨g0, gn⟩
⟨g1, g0⟩ ⟨g1, g1⟩ . . . ⟨g1, gn⟩

...
...

⟨g0, gn⟩ ⟨g1, gn⟩ . . . ⟨gn, gn⟩

 , x =


a0

a1
...

an

 , b =


⟨f , g0⟩
⟨f , g1⟩

...
⟨f , gn⟩

 ,

kjer je ⟨f , g⟩ :=
∑m

i=1 f(xi)g(xi). Iščemo torej polinome gj , za katere velja

⟨gj , gk ⟩ = 0 za j , k . (13)

Zaporedju polinomov g0, . . . ,gn, za katere velja deg gj = j, vodilni koeficient gj

je 1 in velja (13), pravimo zaporedje ortogonalnih polinomov (ZOP).

Rešitev našega problema je ZOP gj polinom p:

p(x) =
n∑

i=0

aigi(x), ai =
⟨f , gi⟩
⟨gi , gi⟩

.
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Numerična integracija

Oceni
∫b

a f(x)dx.

▶ Newton–Cotesova (NC) pravila: trapezno, Simpsonovo
pravilo

▶ Izbira koraka v NC pravilih
▶ Adaptivna NC pravila
▶ Gaussove kvadraturne formule
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Numerična integracija
Naš cilj je izračunati določen integral∫b

a
f(x) dx = F(b) − F(a)

funkcije f(x). Tu je F nedoločen integral funkcije f .

Če ne znamo izračunati nedoločenega integrala F , smo v
težavah. Npr. za f(x) = e−x2

, g(x) = sin x
x , h(x) = x tan x.

Prav tako ne moremo točno izračunati vrednosti integrala, če
imamo funkcijo podano samo na neki množici točk.
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Osnovno trapezno pravilo in napaka E
Integral

∫a+h
a f(x) dx tako, da f aproksimiramo z linearno

funkcijo in izračunamo ploščino pod linearno funkcijo oz.
trapezom.

p(x) = f(a) +
f(b) − f(a)

b − a
(x − a)

Velja∫b

a
f(x) dx ≈

∫b

a
p(x) dx = f(a)(b − a) +

f(b) − f(a)
b − a

(b − a)2

2

=
(b − a)

2
(f(a) + f(b)) .

131/170



Pri tem je napaka naslednja:

E =

∫b

a
(f(x) − p(x)) dx =

∫b

a
f [a, b, x](x − b)(x − a) dx

=
f ′′(η)

2
·
∫b

a
(x − b)(x − a) dx

=
f ′′(η)

2

(
−

1
6
(b − a)3

)
= −

(b − a)3f ′′(η)
12

,

kjer je η ∈ [a,b] in tretja enakost sledi po izreku o f [a,b, ξ].
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Sestavljeno trapezno pravilo
Če interval ni zelo kratek, potem očitna naivna linearna transformacija
običajno ne da dobrega približka integrala.

Če interval [a, b] razdelimo z ekvidistantnimi točkami x0, x1, . . . , xn, tj.

h := hi = xi+1 − xi

je konstanta in na vsakem intervalu uporabimo osnovno trapezno pravilo,
dobimo:∫b

a
f(x) dx ≈ h

2

n−1∑
i=0

f(xi) + f(xi+1)

=
h
2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn))
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Napaka Ei na intervalu [xi , xi+1] je enaka

Ei = −
h3 · f ′′(ηi)

12
za nek ηi ∈ [xi , xi+1].

Torej je skupna napaka

E =

n−1∑
i=0

Ei =

n−1∑
i=0

−
h3 · f ′′(ηi)

12
= −

h3 · nf ′′(η)
12

= −
(b − a)h2 · f ′′(η)

12
,

kjer je η ∈ [a,b] in smo v tretji enakosti uporabili izrek o srednji
vrednosti (f ′′ je zvezna) in v zadnji enakosti dejstvo, da je
b − a = nh.
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Primer -
∫1

0 e−x2 dx
Koliko točk uporabiti, da bo sestavljeno trapezno pravilno
natančno z napako omejeno z 10−6?

Želimo ∣∣∣(b − a)h2f ′′(η)
12

∣∣∣ ⩽ 10−6

Kako velik je drugi odvod f ′′(x)?

f ′(x) = −2xe−x2
, f ′′(x) = −2e−x2

+ 4x2e−x2
.

Ker je

f ′′′(x) = 12xe−x2
− 8x3e−x2

= 4x(3 − 2x2)e−x2

pozitiven na [0, 1], je f ′′ monotono naraščajoč na [0, 1] in zato
|f ′′| zavzame maksimum v krajišču: |f ′′(0)| = 2. Potem lahko
omejimo

(b − a)2h2

12
⩽ 10−6 ⇒ h2 ⩽ 6·10−6 ⇒

√
(1/6)103︸           ︷︷           ︸
≈410

⩽ n.
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Trapezno pravilo s kontrolo koraka
Motivacija. Če uporabimo sestavljeno trapezno pravilo, moramo:

▶ Vnaprej določiti velikost h.

▶ Če želimo oceniti napako, moramo znati oceniti f ′′(η) na intervalu [a, b].

Obe težavi želimo rešiti, tj. radi bi, da funkcija samo zmanjšuje h, v kolikor
napaka ni dovolj manjka. V ta namen moramo znati to napako oceniti.
Pridemo do trapeznega pravila s kontrolo koraka.

Naj bo I =
∫b

a f(x)dx in T(h) ocena za I z uporabo sestavljenega trapeznega
pravila z velikostjo intervala h.

Spomnimo se, da pri sestavljenem trapeznem pravilu T(h) za napako E(h)
velja:

E(h) := T(h) − I =
b − a

12
f ′′(ξh)h2, kjer je ξh ∈ (a, b).

Želimo se izogniti dejstvu, da moramo poznati f ′′. Zapišimo napako še v
primeru razpolovljenega koraka, tj. h

2 :

E(h/2) := T(h/2) − I =
b − a

12
f ′′(ξh/2)

h2

4
, kjer je ξh/2 ∈ (a, b).

Predpostavimo, da je b−a
12 f ′′(ξh) približno enako C za vsak h.
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Dobimo:

I = T(h) − Ch2 = T(h/2) − C
h2

4
.

Sledi:

T(h) − T(h/2) =
3
4

Ch2 + O(h4) oz. Ch2 ≈ 4
3
(T(h) − T(h/2)).

Tako sta
4
3
(T(h) − T(h/2)),

1
3
(T(h) − T(h/2))

približka za napaki E(h) in E(h/2). Velja

T(h/2) =
T(h)

2︸  ︷︷  ︸
razpolovimo T(h)

+
h
2

n∑
i=1

f(a + (i − 1/2)h)︸                           ︷︷                           ︸
računamo samo ta del

, n = (b − a)/h.

Algoritem:

1. Izračunamo T(b − a) = (b − a) f(a)+f(b)
2 .

2. Izračunamo T((b − a)/2) = T(b−a)
2 + b−a

2 f((a + b)/2).

3. Izračunamo 1
3 (T(b − a) − T((b − a)/2)). Če je to dovolj majhno po

absolutni vrednosti, končamo, približek za integral pa je T((b − a)/2).
Sicer ponovimo postopek z razpolovljenim h.

137/170



Adaptivno trapezno pravilo
Motivacija: Če uporabimo trapezno pravilo s kontrolo koraka, potem dolžine
koraka h ne rabimo sami določiti, vendar pa je h enak na celotnem
integracijskem intervalu. Želeli bi, da na nekaterih delih intervala uporabimo
večje h, manjše pa le tam, kjer je to res potrebno.

Zgornji cilj lahko dosežemo z uporabo rekurzivnega računanja integrala:

▶ Najprej izračunamo T(b − a) in T((b − a)/2).

▶ Če je podobno kot pri kontroli koraka zgoraj ocena napake
e := T(b−a)/2−T(b−a)

3 dovolj majhna, vrnemo T((b − a)/2) + e in
končamo.

▶ Če je e prevelik, ponovimo zgornji postopek ločeno za podintervala
[a, (a + b)/2] in [(a + b)/2,b], pri čemer naj bo napaka na vsakem
največ polovica začetne tolerance.

▶ Rekurzivno nadaljujemo zgornji postopek in dobimo oceno integrala, pri
čemer delilne točke ne bodo enakomerno razporejene po intervalu
[a, b].
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Enostavno Simpsonovo pravilo
Naj bo p2 polinom stopnje 2, s katerim interpoliramo točke(

a, f(a)
)
,
(a + b

2
, f(

a + b
2

)
)
,
(
b, f(b)

)
:

p2(x) = C0 + C1 · (x − a) + C2 · (x − a)
(

x −
a + b

2

)
.
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Označimo h := b−a
2 . Rešujemo sistem:

p2(a) = f(a), p2

(a + b
2

)
= f
(a + b

2

)
, p2(b) = f(b).

Dobimo

C0 = f [a] = f(a), C1 = f
[
a,

a + b
2

]
=

f(a + h) − f(a)
h

,

C2 = f
[
a,

a + b
2

, b
]
=

f(a + 2h) − 2f(a + h) + f(a)
2h2 .

Računamo
∫b

a p2(x)dx (naredimo subsitucijo x = a + t);∫a+2h

a
p2(x) dx =

∫2h

0
p2(a + t) dt

= f(a) · 2h +
f(a + h) − f(a)

h
· 2h2 +

+
f(a + 2h) − 2f(a + h) + f(a)

2h2 · 2
3

h3 =

h
3
(
f(a) + 4f(a + h) + f(a + 2h)

)
.
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V prejšnjem izračunu smo upoštevali

p2(a + t) = C0 + C1t + C2 t(t − h).

Izkaže se, da je napaka približno:

−
1
90

h5f (4)(ξ) , ξ ∈ [a, b].
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Sestavljeno Simpsonovo pravilo in napaka
Vzemimo ekvidistantno particijo P = {x0 = a < · · · < xn = b} intervala [a, b]
na sodo število enako dolgih intervalov in na zaporednih trojicah točk
uporabimo osnovno Simpsonovo pravilo (h = xi+1 − xi):∫b

a
f(x) dx ≈

n
2−1∑
i=0

h
3
[f(x2i) + 4f(x2i+1) + f(x2i+2)]

=
h
3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + · · ·+ f(xn)] .
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Napaka Ei na intervalu [x2i , x2i+2] je enaka

Ei = −
h5f (4)(ηi)

90

za nek ηi ∈ [x2i , x2i+2]. Torej je skupna napaka

E =

n
2−1∑
i=0

Ei =

n
2−1∑
i=0

−
h5f (4)(ηi)

90
= −

n
2

h5f (4)(η)

90

= −
(b − a)h4f ′′(η)

180
,

kjer je η ∈ [a,b] in smo v tretji enakosti uporabili izrek o srednji vrednosti.
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Adaptivno Simpsonovo pravilo
Motivacija. Ideja je povsem enaka kot pri adaptivnem trapeznem pravilu, tj.
radi bi uporabili čim večji h povsod, kjer je to mogoče. Če s S(h) označimo
vrednost sestavljenega Simpsonovega pravila s korakom dolžine h, potem
napako E ocenimo iz S(h) in S(h/2).

Postopek:
▶ Najprej izračunamo S(b − a) in S((b − a)/2).

▶ Iz
∫b

a f(x)dx = S(h) + C1h4 = S(h/2) + C1(
h
2 )

4 izrazimo

C1

(
h
2

)4

=
S(b − a)/2 − S(b − a)

15
,

kar je naša ocena napake E. Če je E dovolj majhna, vrnemo
S((b − a)/2) + E in končamo.

▶ Če je E prevelik, ponovimo zgornji postopek ločeno za podintervala
[a, (a + b)/2] in [(a + b)/2,b], pri čemer naj bo napaka na vsakem
največ polovica začetne tolerance.

▶ Rekurzivno nadaljujemo zgornji postopek in dobimo oceno integrala, pri
čemer delilne točke ne bodo enakomerno razporejene po intervalu
[a, b].
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Gaussove kvadraturne formule
▶ NC pravila za integriranje so oblike∫b

a
f(x) dx ≈

n∑
j=0

wj f(xj), (14)

kjer so točke xj enakomerno razporejene, vozli wj pa uteži.

▶ Vemo pa že iz poglavja o interpolacijskih polinomih, da ekvidistantne
točke niso vedno najboljša izbira.

▶ Rešili se bomo ekvidistantnih vozlov v kvadraturnih formulah.

▶ V formuli (14) bomo izbirali vozle in koeficiente na optimalen način, tako
da maksimiziramo stopnjo natančnosti, tj. integracijsko pravilo bo točno
za polinome najvišjih možnih stopenj.

▶ Imamo n + 1 prostih točk xj ∈ [a,b],

a ⩽ x0 < x1 < · · · < xn−1 < xn ⩽ b.

in n + 1 realnih koeficientov wj , tj. skupaj 2n + 2 neznank.
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Primer najboljših vozlov za interval [−1, 1]
Oglejmo si primer n = 1 (tj. 2 točki) na primeru intervala [−1, 1]. Poiščimo w0,
w1, x0, x1, tako da velja∫1

−1
f(x) dx ≈ w0f(x0) + w1f(x1),

pri čemer je aproksimacija kar se da točna.∫2

1
(x3 + 1) dx =

[
x4

4
+ x
]2

1
= 4.75.

Cilj: poišči w0, w1, x0, x1 tako da bi aproksimacija točna za polinome stopnje
največ 3:

f(x) = c0 + c1x + c2x2 + c3x3.

To pomeni, da mora za vsak c0, c1, c2, c3 ∈ R veljati:∫1

−1
f(x) dx =

∫1

−1

(
c0 + c1x + c2x2 + c3x3) dx

= w0
(
c0 + c1x0 + c2x2

0 + c3x3
0

)
+ w1

(
c0 + c1x1 + c2x2

1 + c3x3
1

)
.

(15)
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Desno stran preuredimo na konstantne, linearne, kvadratične in kubične
člene, ter dobimo, da je naslednji izraz

c0

(
w0 + w1 −

∫1

−1
1dx

)
+ c1

(
w0x0 + w1x1 −

∫1

−1
x dx

)
+ c2

(
w0x2

0 + w1x2
1 −

∫1

−1
x2 dx

)
+ c3

(
w0x3

0 + w1x3
1 −

∫1

−1
x3 dx

)
.

ničelen. Ker so koeficienti c0, c1, c2 in c3 poljubni, morajo biti koeficienti pri
njih ničelni.

Od tod sledi:

w0 + w1 =

∫1

−1
1dx = 2 w0x0 + w1x1 =

∫1

−1
x dx = 0

w0x2
0 + w1x2

1 =

∫1

−1
x2 dx =

2
3

w0x3
0 + w1x3

1 =

∫1

−1
x3 dx = 0

Z nekaj algebre pridemo do:

w0 = 1 w1 = 1 x0 = −

√
3

3
x1 =

√
3

3
Zato: ∫1

−1
f(x) dx ≈ f

(
−

√
3

3

)
+ f

( √
3

3

)
.
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Posplošitev na interval [a, b]

Z linearno substitucijo

t = a0 + a1x, t(a) = −1, t(b) = 1,

preslikamo interval [a, b] na [−1, 1].

Velja a0 = − b+a
b−a in a1 = 2

b−a ter

x =
b − a

2
t +

b + a
2

, dx =
b − a

2
dt .

Sledi: ∫b

a
f(x) dx =

∫1

−1
f
(
(b − a)t + b + a

2

)
b − a

2
dt

in lahko uporabimo kvadraturno formulo nad [−1, 1].

Z uporabo dveh točk, n = 1, smo dobili točen integral za polinome stopnje
največ 2 · 1 + 1 = 3.
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Razširitev Gaussovih kvadraturnih formul

Sedaj je naš cilj razširiti zgornje pravilo tako, da bo delovalo za polinome višje
stopnje, tj. z vsaki dodanim parom vozla in uteži želimo povečati točnost za
dve stopnji.

Velja:
▶ Smiselno kvadraturno pravilo za integracijo nad intervalom [−1, 1] na

enem vozlu bi uporabilo x = 0. To pa je ničla funkcije ϕ(x) = x .

▶ Kvadraturo pravilo na dveh točkah ± 1√
3

smo dobili za ničli funkcije

ϕ(x) = 3x2 − 1 .

▶ Kako nadaljevati?
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Izrek (Gauss)
Naj bo q(x) netrivialen polinom stopnje n + 1, tako da je∫b

a
xk q(x)dx = 0 za vsak k = 0, 1, . . . ,n

in naj bodo x0, x1, . . . , xn ničle funkcije q(x). Potem velja∫b

a
f(x)dx ≈

n∑
i=0

Ai f(xi),

kjer je

Ai =

∫b

a
ℓi(x)dx za i = 0, . . . , n,

pri čemer ℓi označuje i-ti Lagrangeov bazni polinom na točkah
x0, . . . , xn, pravilo pa je točno za polinome stopnje največ
2n + 1.
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Reševanje diferencialnih
enačb

y ′ = f(x, y), y(x0) = y0

▶ Eulerjeva metoda
▶ Runge-Kutta metode
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Diferencialna enačba
Diferencialna enačba (DE) je enačba oblike:

F(t , x, ẋ, ẍ, . . . , x(n)) = 0, (16)

kjer je x = x(t) odvisna spremenljivka, t neodvisna spremenljivka, ẋ
pa označuje odvod x po t .

Če je y = y(x) odvisna spremenljivka, x pa neodvisna, potem je DE
oblike

F(x, y ′, y ′′, . . . , y(n)) = 0. (17)

Ključna lasnost DE je ta, da poleg neodvisne spremenljvike t (oz. x)
in odvisne spremenljivke x (oz. y) nastopajo še odvodi odvisne
spremenljivke ẋ, . . ., x(n) (oz. y ′, . . ., y(n)).

Rešitev DE je (dovoljkrat odvedljiva) funkcija, ki zadošča enačbi (16)
oz. (17) na definicijskem območju D neodvisne spremenljivke.

Red DE je stopnja najvišjega odvoda, ki nastopa v DE.

Primeri. y ′ = y, y ′ + 5xy = 3x2, ẋ + x = 0, ẍ + aẋ + bx = A cosωt .
152/170



Splošna rešitev diferencialne enačbe reda n je družina funkcij,
odvisna od n parametrov, ki so vse rešitve diferencialne enačbe.

Primer
Rešimo DE y ′ = y.

dy
dx

= y ⇒ dy
y

= dx ⇒
∫

dy
y

=

∫
dx

⇒ log(|y |) = x + C, C ∈ R
⇒ y = Kex , K ∈ R
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Partikularna rešitev je posamezna rešitev iz te družine.
Določena je z n dodatnimi pogoji, na primer z začetnimi pogoji:

x(t0) = a0, ẋ(t0) = a1, . . . , x(n−1)(t0) = an−1

Zelo malo DE je analitično rešljivih. Mednje sodijo:

▶ DE z ločljivima spremenljivkama

▶ Linearne DE

▶ DE zelo posebne oblike

Večina DE ni analitično rešljivih. Te rešujemo numerično.
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Diferencialna enačba 1. reda z ločljivima
spremenljivkama

ẋ = f(t)g(x)

Enačbo rešimo tako, da vpeljemo ẋ =
dx
dt

in ločimo spremenljivki:

dx
dt

= f(t)g(x),
dx

g(x)
= f(t)dt

in potem integriramo ∫
dx

g(x)
=

∫
f(t)dt .
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Linearna diferencialna enačba

y ′ + f(x)y = g(x) (18)

Pravimo, da je enačba homogena, če je g(x) = 0 in nehomogena, če
je g(x) , 0.

1. Rešimo homogeni del y ′ + f(x)y = 0 s pomočjo ločitve
spremenljivk. Dobimo rešitev

y = Ce−
∫

f(x)dx = C z(x)

2. Metoda variacije konstante
▶ V (18) vstavimo y = C(x) z(x) in rešimo na C(x).
▶ Tako dobljeni C vstavimo v rešitev homogenega dela.
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Numerično reševanje DE
Na intervalu [a, b] rešujemo DE prvega reda

y ′ = f(x, y), y(a) = y0. (19)

Interval [a, b] razdelimo z zaporedjem točk

a = x0 < x1 < x2 < . . . < xn = b.

Z yi označimo približek za rešitev (19) v točki xi . Označimo dolžino
koraka z hi := xi+1 − xi .

Razliko med približkom in točno rešitvijo v xi pišemo z gi = yi − y(xi)
in jo imenujemo globalna napaka v xi .

Razliko med približkom in točno rešitvijo DE

z ′ = f(x, z), z(xi−1) = yi−1 (20)

v xi pišemo z ℓi = yi − z(xi) in jo imenujemo lokalna napaka v xi .

Red metode je število p ∈N, ki zadošča ℓi = Chp+1
i + O(hp+2

n )
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Eulerjeva metoda
Pri tej metodi v vsaki točki xi uporabimo linearno aproksimacijo
funkcije. Rešitev na intervalu [xi , xi+1] nadomestimo z odsekom
tangente na graf rešitve v točki xi :

yi+1 = yi + hi · f(xi , yi).
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1

2 y = y0
3 x = x0
4 h = (b − a)/n
5 for i = 1, . . . , n − 1
6 y = y + h · f(x, y)
7 x = x + h
8 end

Ker je

y(x + h) = y(x) + hy ′(x)︸              ︷︷              ︸
upoštevamo

+
h2

2
y ′′(ξ)︸       ︷︷       ︸

napaka

, ξ ∈ [x, x + h],

je red Eulerjeve metode 1.
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Metode Runge-Kutta
Ideja teh metod je, da za aproksimacijo odvoda na intervalu [xn, xn+1]
ne upoštevamo odvoda le v točki xn, temveč neko uteženo povprečje
odvodov na [xn, xn+1].

Primer (Metode Runge-Kutta (RK) reda 2)
Upoštevamo odvoda v točki xn in xn + ch ∈ [xn, xn+1], kjer je
h = xn+1 − xn in c ∈ [0,1]. Približek yn+1 izračunamo tako, da se
premaknemo za uteženo povprečje premikov po tangentah v točkah
xn in xn + ch:

yn+1 = yn + b1︸︷︷︸
utež

· (h · f(xn, yn))︸             ︷︷             ︸
tangenta v xn

+ b2︸︷︷︸
utež

· (h · f(xn + ch, y(xn + ch)))︸                                ︷︷                                ︸
tangenta v xn+ch

(21)

Upoštevamo

y(xn + ch) ≈ yn + chy ′(xn) = yn + chf(xn, yn) ≈ yn + ahf(xn, yn), (22)

kjer je a postal prost parameter.

160/170



Primer (Metode Runge-Kutta (RK) reda 2)
Upoštevamo (22) v (21) in dobimo

yn+1 = yn + b1 · (h · f(xn, yn))︸             ︷︷             ︸
k1

+b2 · (h · f(xn + ch, yn + a · k1))︸                               ︷︷                               ︸
k2

. (23)

Z razvojem funkcij y(xn + h) in f(xn + ch, yn + ak1) v Taylorjevi vrsti in
primerjavo koeficientov pri h in h2 v (23) dobimo pogoja

1 = b1 + b2,

1
2
(fx + fy f)n = b2c(fx)n + b2a(ffy)n,

(24)

kjer fn, (fx)n, (fy)n pomenijo f(xn, yn), fx(xn, yn), fy(xn, yn). Enačbi (24)
imata veliko rešitev, npr.:
▶ b1 = b2 = 1

2 in c = a = 1. RK metoda je:

yn+1 = yn +
1
2
(k1 + k2),

k1 = hf(xn, yn),

k2 = hf(xn + h, yn + k1).

▶ b1 = 1, b2 = 0 in c = a = 1
2 . RK metoda je:

yn+1 = yn + k2,

k1 = hf(xn, yn),

k2 = hf(xn +
1
2

h, yn +
1
2

k1).
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Primer (Metode Runge-Kutta (RK) reda 2)
▶ b1 = 1, b2 = 0 in c = a = 1

2 . RK metoda je:

yn+1 = yn + k2,

k1 = hf(xn, yn),

k2 = hf(xn +
1
2

h, yn +
1
2

k1).

Splošna RK metoda je oblike

yn+1 = yn + b1k1 + b2k2 + . . .+ bsks ,

k1 = hf(xn, yn),

k2 = hf(xn + c2h, yn + a2,1k1),

k3 = hf(xn + c3h, yn + a3,1k1 + a3,2k2),

ks = hf(xn + csh, yn + as,1k1 + . . .+ as,s−1ks−1).

(25)
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Butcherjeva tabela

RK metode (25) v kompaktni obliki shranjujemo v Butcherjevi tabeli:

0 0
c2 a2,1 0
c3 a3,1 a3,2 0
...

...
cs as1 as2 as,3 · · · as,s−1 0

b1 b2 b3 · · · bs−1 bs ,

kjer je še

c2 = a2,1,

c3 = a3,1 + a3,2,

...

cs = as,1 + as,2 + . . .+ as,s−1.
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Metoda Runge-Kutta reda 4
Butcherjeva tabela:

0 0
1
2

1
2

0

1
2

0
1
2

0

1 0 0 1 0

1
6

1
3

1
3

1
6

Metoda je

yn+1 = yn +
1
6

k1 +
1
3

k2 +
1
3

k3 +
1
6

k4,

k1 = hf(xn, yn), k2 = hf(xn +
1
2

h, yn +
1
2

k1),

k3 = hf(xn +
1
2

h, yn +
1
2

k2), k4 = hf(xn + h, yn + k3).
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Ocenjevanje napake in kontrola koraka
1. Pri računanju nas zanima velikost globalne napake.

2. Med izvajanjem metode ocenjujemo velikost lokalnih napak.

3. Na velikost lokalnih napak ključno vpliva izbira dolžine koraka.

Naj bo M metoda reda p, s katero izračunamo y(xn+1) z dolžino
koraka h. Približek označimo z yn+1,h . Velja:

ℓn+1 := yn+1,h − z(xn+1) ≈ Chp+1, (26)

kjer je z(x) rešitev začetnega problema

y ′ = f(x, y), y(xn) = yn. (27)

Podobno velja:

ℓn+1 = yn+1,h/2 − z(xn+1) ≈ C(h/2)p+1 + C(h/2)p+1 = 2−pChp+1,
(28)

saj smo pri koraku h/2 naredili dva koraka metode.
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Odštejemo (28) od (26) in dobimo

yn+1,h − yn+1,h/2 ≈ Chp+1(1 − 2−p). (29)

Iz (29) izrazimo Chp+1 in dobimo

Chp+1 ≈
yn+1,h − yn+1,h/2

1 − 2−p . (30)

1. Če je |ℓn+1| < ϵh, potem yn+1,h sprejmemo.
V vsaki točki namreč omejimo napako na ϵ. Na celem intervalu
integriramo torej napako največ ϵ in dobimo mejo ϵh.

2. Če je |ℓn+1| ⩾ ϵh, potem ponovimo računanje približka y(xn+1) s
krajšim korakom.

3. Če je |ℓn+1| bistveno manjši od ϵh, lahko v nadaljevanju
uporabimo daljši korak.
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Globalna napaka

Lipschitzov pogoj. Funkcija f je Lipschitzova v y (na danem območju)
s konstanto L , če za vse x in vse y1, y2 iz območja velja

|f(x, y1) − f(x, y2)| ⩽ L |y1 − y2|.

To je standarden (lokalno pogosto izpolnjen) pogoj: če je ∂f/∂y
zvezna in omejena na območju, potem je f Lipschitzova.

(Povezava z globalno napako) Če je f Lipschitzova v y s konstanto L ,
potem velja

|gi | ⩽ eL(xi−a)
i∑

k=1

|ℓk | ⩽ eL(b−a)
i∑

k=1

|ℓk |.
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Globalna napaka

Zakaj kriterij |ℓn+1| < εh? Če na vsakem koraku dosežemo |ℓk | ≲ εhk ,
potem

i∑
k=1

|ℓk | ≲ ε

i∑
k=1

hk = ε(xi − a),

zato po zgornji oceni sledi

|gi | ≲ eL(b−a)
i∑

k=1

|ℓk | ≲ eL(b−a) ε(xi − a) ⩽ eL(b−a) ε(b − a).

(Torej εh pomeni približno konstantno napako na enoto dolžine;
globalna napaka je nadzorovana do stabilnostnega faktorja.)
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Sistemi diferencialnih enačb
Sistem DE je oblike:

y ′
1 = f1(x, y1, . . . , ym),

y ′
2 = f2(x, y1, . . . , ym),

...

y ′
m = fm(x, y1, . . . , ym),

(31)

kjer so y1(x), . . ., ym(x) neznane funkcije. Imamo še m začetnih
pogojev yi(x0) = yi,0 za i = 1, . . . ,m. Sistem (31) lahko zapišemo v
vektorski obliki:

y⃗ = f⃗(x, y⃗), y⃗(x0) = y⃗0, (32)

kjer so

y⃗ = (y1, . . . , ym), f⃗ = (f1, . . . , fm),
y⃗(x0) = (y1(x0), . . . , ym(x0)).

Sistem (32) lahko rešujemo z Runge-Kutta metodami, le da vse funkcije
podamo kot vektorske funkcije, točke pa kot vektorje.
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Robni problem - strelska metoda
Robni sistem DE v dveh spremenljivkah je oblike:

y ′ = f(x, y, z),
z ′ = g(x, y, z),

(33)

kjer sta y(x) in z(x) neznani funkciji, x ∈ [a, b], dana pa sta še
pogoja

y(a) = ya ∈ R, z(b) = zb ∈ R.

Sistem (33) na intervalu rešujemo s strelsko metodo, tako da
ugibamo vrednost z(a) = α1, rešimo začetni problem z eno od
numeričnih metod in pogledamo, ali je v rešitvi res z(b) = zb . To
skoraj gotovo ne bo izpolnjeno.

Zato uvedemo funkcijo napake

F : R→ R, α 7→ zb − z(b).

Radi bi našli α, tako, da je F(α) = 0. Iščemo torej ničlo funkcije F . Ker F ni
eksplicitno podana, tangentne metode za iskanje ničle F ne moremo
uporabiti. Lahko pa uporabimo sekantno metodo, pri čemer sprva
izračunamo F(α1) in F(α2) za dva začetna približka α1,α2.
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