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Viri
Viri v slovensgini:
» Bojan Orel, Osnove numeritne matematike, Zalozba FE in FRI.

> Bor Plestenjak: Razsirjen uvod v numeri¢ne metode, DMFA zaloznistvo.

Tuji viri - numeri¢na linearna algebra:
» G.H. Golub, C.F. Van Loan: Matrix Computations, 3rd edition, Johns
Hopkins Univ. Press, Baltimore, 1996.

> L.N. Trefethen, D. Bau: Numerical Linear Algebra, SIAM, Philadelphia,
1997.

» JW. Demmel: Applied Numerical Linear Algebra, SIAM, 1997.

Tuji viri - numeriCna analiza:
» K. Atkinson, W. Han: Elementary Numerical Analysis, 3rd edition, John
Wiley & Sons, Inc., New Jersey, 2003.

» R.L. Burden, J.D. Faires, A.M. Burden: Numerical Analysis, 10th
edition, Cengage Learning, Boston, 2016.

> D.R. Kincaid, E.W. Cheney: Numerical Analysis, Mathematics of

Scientific Computing, 3rd edition, Brooks/Cole, Pacific Grove, 2002.
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Obveznosti

» Predavanja: 2 ure na teden
» Vaje: 2 uri na teden
» Pisni izpit: 50% ocene

> Izpit iz teorije: 50% ocene
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Vsebina predmeta

o > ©w b~

Racunanije in vloga napak pri numeri¢ni matematiki
ResSevanje sistemov linearnih enacb

ResSevanje nelinearnih enacb

Numeri¢no odvajanje in integriranje

Numeri¢no reSevanje diferencialnih enacb
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vV v vyYyy

Prvo poglavije:

Uvod v numericno
racunanje

Numeri¢no racunanje

Predstavljiva Stevila

Zaokrozitvene napake
Katastrofalno seStevanje/odstevanije
Primeri (ne)stabilnega racunanja
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Numeri¢no in simbolno racunanje
Numeri¢no raCunanje:
» Takoj v formulo vstavljamo

» Pridemo do numeri¢nega rezultata -

Simbolno racunanje:
» simboli predstavljajo Stevila
> izraz preoblikujemo s simbolnim raCunanjem do novega
simbolnega izraza - analiticna resitev

Primer
» Numeri¢no:

(17.36)2 — 1

=16.36; 0. . ..(7), 3.14159 .. . (7
1736 1 1 16.36; 0.25, 0.33333...(7), 3 59...(7)

» Simbolno:

, 71, tan 83

x
_|_
—
I
w| =
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Numeri¢no in simbolno racunanje

Primer

1 >> x=rand; (x"°2-1)/(x+1)-(x-1)
2
3 ans=1.387778780781446e-17

Analitiéno bi rezultat moral biti 0, vendar zaradi numeri¢nih
napak dobimo majhno napako.
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Kaj zanima numericno matematiko?
Metoda. . . matemati¢na konstrukcija, s katero reSujemo problem
Algoritem. . . koraki metode

Implementacija. . . zapis algoritma v izbranem jeziku

Kaj pomeni ‘biti numeri¢no dober’?

majhna sprememba podatkov =- majhna napaka rezultata

> Ali je problem obcutljiv?
> Ali je metoda ‘dobra’?

» Ali je algoritem robusten - deluje na Sirokem spektru
problemov?

> Ali je implementacija hitra - Casovna in prostorska
zahtevnost?
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Obcutljivih problemov NM ne more resiti

Problem je obcutljiv, e se ob majhni spremembi zaetnih
podatkov to¢en rezultat zelo spremeni.

Obcutljivost je odvisna le od narave problema in ne od izbrane
numeri¢ne metode.

Primer (presecis¢a premic)
Sistem in njegova perturbacija

xX+y=2 — x+y=19999
x—y=0 — x—y=0.0002

ima reditvix =y =1 0z. x = 1.00005 in y = 0.99985. Problem
je neobCutljiv, saj je slo za spremembo za isti velikostni razred.
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Sistem in njegova perturbacija

x+099y =199 — x+0.99y =1.9899
0.99x +0.98y =197 — 0.99x +0.98y = 1.9701

ima reSitvix =y =10z. x =297 in y = —0.99. Problem je
obcutljiv, saj je majhna sprememba zacetnih podatkov
povzrocila veliko spremembo rezultata.
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Na ¢em temeljijo numeriChe metode?

» Matrike nadomestimo z enostavnejSimi (upostevamo samo
diagonalni ali zgornjetrikotni del).

> Nelinearne probleme nadomestimo z linearnimi (linearna
aproksimacija v tocki).

» Neskoncne procese nadomestimo s koncnimi (uporabimo
Taylorjev polinom) .

» NeskoncCno razsezne prostore nadomestimo s kon¢no
razseznimi (funkcije nadomestimo s polinomi).

» Diferencialne enaCbe nadomestimo z algebraic¢nimi
(znebimo se vseh parcialnih odvodov iz enacb).
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Zakaj sploh potrebujemo numericho matematiko?
Znanost, ki temelji na matemati¢nih izracunih, je neposredno
odvisna od NM.

Nekatere katastrofe so se zgodile zaradi slabega numeriCnega
rac“:unanja (http://www-users.math.umn.edu/~arnold//disasters/).

» NesrecCa Misije Patriot, Zalivska vojna 1991, Savdska
Arabija, 28 zrtev: slaba analiza zaokroZitvenih napak.

Cas zadetka iraske rakete, usmerjene na Savdsko Arabijo, je bil
raCunan na vsako desetino sekunde v 24-bitnem sistemu. Ker velja

1% — 274 +275 +278 +279 +2712 +2713 Jr2716 +2717 +2720 +2721+
42724 127 p o8
zanemarimo
je vsako desetinko sekunde napaka 9.5 - 108 s. Po 100 urah raunanja
je bila napaka 9.5- 1078 s-100-60-60 - 10 = 0.34 s. Ker je hitrost
rakete 1.676 m/s, je bila pozicija rakete za ve¢ kot 500 m napacno

predvidena in je ta usla radarjem.
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http://www-users.math.umn.edu/~arnold//disasters/

» Eksplozija rakete Ariana 5, Francoska Gvajana, 1996:
posledica prekoracitve obsega Stevil.
https://www.youtube.com/watch?v=PK_yguLapgA
https://www.youtube.com/watch?v=W3YJeoYgozw

Ob prenovi rakete so ‘pozabili’ nadgraditi uporabljen Stevilski sistem, ki
je horizontalno hitrost meril v 16-bitnem sistemu (1 bit porabimo za
predznak). Najvecja hitrost v tem sistemu je

215 1
2042 4 g2l -7 —32767.
Ker je prenovljena raketa po 37 sekundah presegla to hitrost, je prislo

do zaustavitve motorjev...

» Potop naftne plos¢adi Sleipner A, Stavanger, Norveska,
1991, miljarda dolarjev Skode: nenatanéna obdelava
obremenitev pri reSevanju PDE-jev.
https://www.youtube.com/watch?v=eGdiPs4THW8
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https://www.youtube.com/watch?v=PK_yguLapgA
https://www.youtube.com/watch?v=W3YJeoYgozw
https://www.youtube.com/watch?v=eGdiPs4THW8

Ponovitev predstavljivih Stevil

Stevila shranjujemo v obliki

X = £0.d1d2ds ... Oy % f°,]

kjer je
> (3 naravno Stevilo (v ragunalnistvu g = 2),
> dido0s ... dy mantisa, e eksponent.

Primer (baza 10)
> 1000.12345 zapisemo kot +(0.100012345)1o x 10%.
> 0.000812345 zapisemo kot +(0.812345)1¢ x 103,
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Prekoracitev in podkoracCitev

Floating Point Number Line

i— denormal —l

under- under-
flow flow
overflow usable range usable range overflow
= -—
' ' 4
1 T I 1 \ 1
_10+308 —10-308 0 10-308 N\ 10+308
—realmax —realmin realmin \\\\\4 ~realmax
= // ~
/ N
c’ \
i |
\ /
\\zoom—in ViPW/

> izraCuni preblizu 0 lahko povzrocijo podkoracitev
» preveliki izracuni lahko povzrocijo prekoracitev

» prekoracitev je v sploSnem hujsi problem
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|IEEE standard

» |EEE Enojna natanénost: Stevila so predstavljena z 32 biti.
» |EEE Dvojna natancnost: Stevila so predstavljena z 64 biti.

sign bit (8 bits) 23 bits)
d/ exponent
MﬂﬂﬂﬂﬂﬂMHMMMMMMHMMMM - 0.15625
] A (bit index)

stgn (14 phing) (52 bits)

bit  xponent

B (it index)
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Kaj so zaokrozitvene napake?
» Vecine realnih Stevil ne moremo predstaviti v strojni
aritmetiki = zaokrozujemo in delamo zaokrozitvene
napake.

» |EEE standard. .. zaokrozi x do najblizjega predstavljivega
Stevila fl(x). Naj bosta

X_ < x < X4

T

fl(x) = x_, Ceje x blizje x_,
| x4, Ceje xblizje x..

» Kako velika je napaka? Recimo, da je x blizje x_:
X = (0.byb2bs ... bybmi1)2 x 2°,
X_ = (0.b1bobs...bm)s x 2°,
Xy = ((0.bybobs ... bm)2 +2°™) x 2°,
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fi(x) =x(14+9), [0 <2 ™

Absolutna napaka:

X4 — X — zefm—1

X —Xx_ < 5

Relativna napaka:

X — X oe—m—1
-« o
X 1/2 x 2¢ \\Uf’

Torej je
X_=X_—X+x>=—-ux+x=x(1—-u).
Podobno
X < x(1+u).
Sledi

i) =x(1+5)] Kerjels| < u.
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Kako raCunamo s predstavljivimi Stevili?
Za predstavljivi Stevili x, y in katerokoli od osnovnih operacij
® € {+, —, -, :} Stevilo x ® y ni nujno predstavljivo. Po zgornjem
pa velja

fixoy)=xoy)(1+5)] Kerjels|<u.

Sestevanje numeri¢no ni asociativna operacija, {j.

\(a+b)+c¢a+(b+c)\:

Primer

1 >> a=rand;b=rand;c=rand; ((a+b)+c)-(a+(b+c))
2
3 ans=-2.220446049250313e-16
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Sestevamo od manjsih k vecjim Stevilom

(a+b)+c = fl(fla+b)+c)=fl((a+b)(1+51)+cC)
[(@a+b)(1+81)+cl(1+82)

= [@a+b+c)+(a+b)s)l(1+82)
a+b
a+b+c

= (a+b+c){1+ 51(1+52)+52:|

Podobno

b+c
a+b+c

a+w+cﬁ4a+b+c%1+ %U+ﬁd+&}

Ce pozabimo na ¢lena §18 in 8384 (Zakaj to lahko naredimo?), dobimo

. a+b
(a+b)+c=(a+b+c)(1+e3) Kerje 63%a+b+cé1+52'
a+(b+c)=(a+b+c)(1+es) Kerje e ~_bte o3+
= 4 jer) 4N T brce 4.

Sklep: Ko seStevamo Stevila, je za ¢im manjSo napako najbolje
zaceti z najmanjSim in pristevati vecje.
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Napake pri numericnem racunanju

> Neodstranljiva napaka D, ... nenatanéni zaetni podatki.
> Napaka metode Dy, ... npr. neskon&ni proces aproksimiramo s konénim.

> racunanje s priblizki in zaokroZevanje.

Celotna napaka D je

D:Dn+Dm+DZ

Primer (sin 75 racunamo v desetiskem sistemu z m = 4)
> Dy fl(7) = 0.3142 - 10°. Ocenimo: |D,| ~ sin’(%)|x — fi(x)| < 1 - 1074,
> D, :sinx ~ x — x3/6. Ocenimo: |Dnl| < x5/120=2.6 - 103,

> D.:fl(x —fI(fi(fix - x) - x)/6)). Ocenimo: |D,| < 3.0-1075.
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Stabilnost meri kakovost metode
Stabilnost metode preverimo z analizo zaokroZitvenih napak.

Vrste napak (x naj bo to€na vrednost, x pa priblizek zanjo):

> Prva delitev:
> Absolutna napaka: .

. X—X
> Relativha napaka: < |

» Druga delitev:

> : Numeri¢na napaka rezultata.

: Koliko je potrebno spremeniti zaCetne

»
podatke, da dobimo izraCunan rezultat.

Velja

‘ |direktna napakal| ~ obcutljivost x |obratna napakal| ‘

Izracunana vrednost je blizu pravi, ¢e reSujemo neobdutljiv
problem z obratno stabilno metodo.
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Odstevanje in sestevanje sta lahko ‘katastrofalni
odstevanje dveh priblizno enakih Stevil

sestevanje dveh priblizno nasprotnih Stevil

izguba
——
a = X.XXXX Xxxx xxx1'ssss. ..
izguba

—
b = x.xxxx xxxx xxx0 tttt . ..

koncéna natancnost

X. XXX XXXX xxx1
X.XXX XXxX xxx0

Potem  ——4"5000000 0001 7777777
1. 7227272 . p—™
—

izguba natancnosti

S ponavljanjem se napake sestevajo.
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Primer katastrofalnega odstevanja
IS¢emo resitve kvadratne enacbe

x°+2ax+b=0, kjerjea>0ina®>b.

Resitev z manj$o absolutno vrednostjo je

—2a+ v4a® —4b >
2
1 kg = a?
2 ko := ky—b
s ks := Vk
4 Ky 1= —a+ks

Ce je a2 veliko vegji od b, potem ima lahko korak 4 veliko
napako. Mozna resSitev:

a+ va’—b —b
X2 =(—a+ va2—b)- = :
2=l ) a++va’—b a+va*?-b
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© 0o N o g »~A W N =

o

11

ki := a2

kg HES k1—b
ks := vk
ki := a+ks
k5 = TT?

>> a = 10000;

> b = -1;

>> x = -a+sqrt(a”2 - Db)

x = 5.000000055588316e-05
> x"2 + 2 * a * x +b

ans = 1.361766321927860e-08

>> x = -b/(a+sqrt(a”2-b))

X = 4.999999987500000e-05

> X2 + 2 * a* x +b

ans = -1.110223024625157e-16
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Racunanje s stabilnejSo obliko
> Izracun vrednosti funkcije

=x(Vx+1-Vx)

ni stabilen za velike x, ker je v/x +1 ~ /x. Tej teZavi se
lahko izognemo:

Fx) = f(x) Vx+14 Vx X
N VXT1+ VX X1+ VX
> Vrsto
I N B
1.2 2.3 nn+1)’

ki se seSteje v n+1 (dokaz: indukcija), je bolje numeri¢no
racunati vzvratno kot
1 1 1

nntl) Ttn—t)yn o TT2
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Sestevanje in odstevanje v sploSnem nista relativno
direktno stabilni operaciji
X,y € R. RaCunamo priblizek pzap = x +y.
p = flfi(x) +fl(y)) =fl(x(1+61) + y(1 + 52))
= (X(1+81)+y(1+82))(1+83)
= X(1481)(1+83) +y(1 +82)(1 + 83)
= X+ Y+ X(81+ 53+ 5183) + y(82 + 83 + 5283)

kjer je |8;| < u. Relativna napaka je

o —pl < IX(81 4 83 4 8103) + ¥ (02 + 03 + 0283)|
pl = X + y '

Torej:

o —pl
Ie]

Ceje x+y blizu0, potem je veliko.
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Mnozenje (in deljenje) je relativno direktno stabilna
operacija
X,y € R. RaCunamo priblizek pzap =x-y.
p = ffi(x)-fi(y)) =fl(x(1+81) - y(1 +82))
= X(1+481)-y(1+82)(1+83)
= Xxy(1+ 01+ d2 + 63 + produkti ve€ o),

kjer je 15| < u. Relativna napaka je

o — pl o Ixyl181 + 82 + 83 + O(u?)]

< = [81 + 82+ 83+ O(U?)]|
p % 1 oe b L)

Torej:

o —pl
pl

Relativha napaka ni odvisna od velikosti produkta xy.
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Vecina numeri¢nih metod ni relativno direktno stabilnih
Vse numeri¢ne metode, kjer sta vkljuceni

operaciji + /—

in kot rezultat lahko dobimo npr. vrednost 0 ali nekje po poti kot
vmesno vrednost skoraj singularno matriko, niso relativno
direkino stabilne, tj. v rezultatu je lahko veliko relativna napaka.

Zato moramo vedno premisliti:
1. V katerih primerih so zgodi velika napaka?
2. Kako nestabilne primere preoblikovati v stabilne?

Primeri takih operacij:
» Racunanje vrednosti polinoma.
» Racunanje skalarnega produkta.
» ReSevanje linearnega sistema.
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Drugo poglavje:
Linearni sistemi
AX =D

» Vektorske in matricne norme
» Pogojenostno Stevilo k(A)

» Direktne metode za reSevanje

> LU razcep
> Pivotna rast p(A)
» Razcep Choleskega

» Predoloc¢eni sistemi

> QR razcep
> Householderjeva zrcaljenja
» SVD razcep
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Vektorska norma je preslikava HH C" — IR, «kizadogéa:

1. Pozitivna definitnost: || x|| > 0 za vsak x € C" in
x| =0< x=0.
2. Homogenost: ||ax|| = |al||x|| za vsaka o« € C in x € C"

3. Trikotnigka neenakost: ||X + y|| < ||x|| + ||yl za vsaka x, y € C".

Primer
Najbo x = (xy,...,xn) € C".
» p—norma, p € IN:

|
Ixllp = (x11P + ... + |xalP) /P
» Supremum norma:

1X/|oo = max((x1l, . . . [xa).
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Enotske kroznice v razlicnih normah

05

-0E

-0B

L
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Matricna norma je preslikava HH : CM — IR, «kizadogta:
1. Pozitivna definitnost: ||A|| > 0 za vsak A € C"*"in
|A|l=0< A =0.
2. Homogenost: ||¢A|| = || ||A|| za vsaka o« € Cin A € C"™*",

3. Trikotniska neenakost: ||A + B|| < ||A]| + ||B|| za vsaka
A, BeC™n

4. Submultiplikativnost: [|AB|| < ||A||||B]| za vsaka A, B € C™".

Trditev
Naj bo || - || vektorska norma na C". Potem predpis
A
IALL = max [Ax]], = max AX
Il =0 Xl

dolo¢a matricno normo na C"™*".

Dokaz
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https://github.com/matfilip/matfilip.github.io/blob/main/Matricne_norme.pdf

Najbo A = [g;],,, , € C"™" matrika. Nekaj matri¢nih norm:
n
1. 1-norma: [|x||y = > _[xil  (1-norma),

i=1

|yA|y1_ max_ Z|a,,| Dokaz

2. Spektralna norma: Tu A;(X) oznaguje j—to lastno vrednost matrike
X.

41z =, max, (ATA)

3. Frobeniusova norma:

IAllF =

4. Supremum norma:

[Alloo = max_(D_laj).
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https://github.com/matfilip/matfilip.github.io/blob/main/1-norma.pdf

Zakaj imeti ve¢ matri¢nih norm?

Nekatere norme je bistveno zahtevneje izraCunati od ostalih.
Zahtevno je npr. dolo¢anje spektralne norme || - |2, saj je
racunanije lastnih vrednosti zahtevna naloga. Poceni pa je
izraCunati 1-normo, co—normo in F—normo. |z razli¢nih ocen,

kot so
y
—JAllg < A < Allg,
\mll IF [A]l2 |Alle
y
—All1 < ||A < n||All1,
\mll 1 A2 Vn|All;

1
= A o] < A < A [e%e}]
\mll | 1A]l2 Vn|A|

pa lahko dobro ocenimo ||A||2.
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ObcCutljivost sistema Ax = b

Zanima nas, kako na spremembo resitve x vpliva napaka v
zacCetnih podatkih, tj. napaka v A in b.

Zanima nas torej, kako velik je Ax v primeru majhnih
perturbacij AA in Ab v reSitvi

(A+AA)(x +Ax) = b + Ab. (1)
Radi bi ocenili relativno napako ”ﬁ(’ﬂ”, kier je | - || neka
vektorska norma.
Izberimo vektorsko normo || - ||. Definirajmo obcutljivost oz.

pogojenostno Stevilo obrnljive matrike A v normi ||-|:

K(A) = [|A[[||A~T]].
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k(A) meri obCutljivost sistema Ax = b

lzrek
Naj bo A v (1) obrnljiva matrika.

1. Privzemimo, da je AA = 0. Potem velja:

|ab]|
bl

lax] _
~
]

k(A)

2. Najbo AA # 0, naj za identi¢no matriko | velja ||I|| =1 in
najbo se |[A~"|||AA| < 1. Potem velja:

x| xlA)_(ab] | [8A]
< + .
. K(A)lf;”l( o1 " A1)
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Primer

1. Ce se spomnimo primera radunanja pre¢iséa dveh premic iz prvih
predavanj, lahko vidimo, da je vprasanje obéutljivosti glede na zacetne
podatke v resnici vprasanje obcutljivosti matrik

11y 100 099
A1:<1 —1) in Az:(o.gg 0.98)'

K1(A1) = ke(A1) = k(A1) =2, k2(Ay) =1,
K1(A2) = Koo (A2) =3.96-10%,  ka(A2) =2, «kr(Ay) =3.92-10%

Za njiju velja:

kjer k., oznacuje obcutljivost v matriéni normi x. Kot smo se
geometrijsko prepricali, je drugi sistem res obcultljiv, prvi pa ne.

2. Primer zelo obcutljive matrike je Hilbertova matrika

1
Hn:|:- . :| G]Rnxn.
i+j—1 i

Ta se pojavi pri iskanju polinoma, ki se v normi ||f|| = \/J":) f2dx najbolje
prilega dani funkciji, saj je j; xHdx = ——. Veljaka(Hs) ~ 4.8-10°, za

i+j+1"
nakljué¢no 5 x 5 matriko pa velja ko, ~ 100.
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Primer
1. Ce z Matlabom z ukazom \ resimo sistem Hisx = v, kjer je
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Direktne metode
AX =D

» Gaussova-eliminacija
» LU razcep
» Pivotiranje
» Razcep Choleskega
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ReSevanje kvadratnih linearnih sistemov

Linearni sistem n enacb z n neznankami xy, ..., Xp je oblike
ai1X41 +aioXo +...+aipxn = by,
8o1X{ + aooXo + ...+ aopXn = bo,
aniX1 +anpXo + ... +amXn = bp,

kjer so ajj, bj realna Stevila.

V matri¢ni obliki ga zapiSemo kot

ayr a2 ... ain X1 by
ax ayp ... ap X2 bo
an1 ap2 ... ann Xn bn

A X b
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Geometrijski pomen sistema Ax = b

Naj bodo a1y, a2y, - - ., an) stolpci matrike A, tj.,
ai
aoj
agj = :I cR"
ani
Linearna kombinacija vektorjev ay, az), . . ., a(p) je vsak vektor
oblike
aiq a2 ain
aoq azo azn
Xt | | FXe| |+t Xe | (2)
ant an2 dnn

kjer so x; € R realna Stevila.

Zanima nas, ali obstaja linearna kombinacija (2), ki je enaka
vektorju b.
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Sistem Ax = b z vidika numericne matematike

» Kako drago je reSevanje sistema Ax = b?
cena=5Stevilo osnovnih raunskih operacij (+, —, -, ).

» Kateri problemi in napake se pojavijo med reSevanjem
Ax =b?
Ali obstajajo slabe matrike? Kako take matrike identificirati?
Vemo Ze, da so slabe matrike z velikim x(A).
Kaj pa, ¢e x(A) ni velik?

> Za katere mairike se da in resSiti tak
sistem?
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Ponovitev Gaussove eliminacije (GE)

Cilj je pretvoriti sistem v zgornjetrikotnega, nato pa ga resiti z
obratno substitucijo.

Primer
Resujemo Ax = b, kjer sta

3 2 -1 —1
A=| 6 -6 7|, b=|-7].
3 -4 4 -6

Tvorimo razsirjen sistem

- 3 2 —1| -
A=[A|b]=| 6 6 7| -7
3 4 4| -6

Pristejemo 2-kratnik prve vrstice drugi in 1-kratnik prve vrstice tretji.

N -3 2 -1 —1
An=| 0 —2 5| -9
-7

0o -2 3
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Primer
Odstejemo 1-kratnik druge vrstice od tretje

N -3 2 —
As=| 0 —2 5
0 0 -2

Resimo z obratno substitucijo

—1
-9
2

2,

2
X3:j2——1,
Yo = 1 (—9— Bxg) =
27_2 3) —
X1:j-l3(—1—2X2+X3):2.

V nadaljevanju bomo:

1. Presteli Stevilo potrebnih racunskih operacij za Gaussovo

eliminacijo (GE).

2. GE bomo zapisali s pomocjo matri¢nih mnozen,.
3. Ukvarjali se bomo s stabilnostjo GE.
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Algoritem GE in cena GE

© 00 N o o »~ W Nno=

-nxn matrika A =[gj]; in nx1 vektor b=[b];

-preoblikujemo [A|b] v zgornjetrikotno z GE
for k=1...n—1
for i=k+1...n
xmult = a,-k/akk
aik =0
for j=k+1...n
aj = aj — (xmult) a
end
b,’ = b,' = (xmult)bk
end
end
lzrek
Stevilo racéunskih operacij (+, —, -, :) za prevedbo matrike A in

razSirjene matrike [A|b] v zgornjetrikotno obliko je

ins +0O(n?). Dokaz
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https://github.com/matfilip/matfilip.github.io/blob/main/Racunska_zahtevnost_GE.pdf

Obratna substitucija in Stevilo operacij

1 -zgornjetrikotna nxn matrika U= [uj];j, vektor
¢ = [cil;
-resimo sistem Ux=c

2

3

4 Xn = Cn/Unn

5 for i=n—1...1
6 S =_j

7 for j=i+1...n
8 S =8 — UjjX;

9 end

10 X,':S/U,','

11 end

Izrek
Stevilo radunskih operacij (+, —, -, :) za resitev sistem Ux = c je

2

n=. Dokaz
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https://github.com/matfilip/matfilip.github.io/blob/main/Racunska_zahtevnost_zgornjetrikotni.pdf

Motivacija za zapis GE v matri¢ni obliki

Videli smo, da je cena pretvorba matrike A oz. sistema [A|b] v
zgornjetrikotno obliko bistveno drazja kot pa obratna
substitucija.

Ce bomo v nekem postoku redevali sisteme Ax = b pri fiksni
matriki A, vektor b pa se bo spreminjal, bi bilo iz raCunskega
vidika bistveno ucCinkoviteje preoblikovanje matrike A v
zgornjetrikotno obliko narediti samo enkrat.

Klju¢no v tem procesu je ugotoviti,
, e da bi delali GE na razSirjenem sistemu.

48/170



LU razcep matrike A

1 -Vhod: A =[agglij nxn matrika.

2 -Izhod: Spodnja trikotna matrika L in zgornja
trikotna matrika U, da je A=LU
3 -fik v spodnjem algoritmu so elementi pod
diagonalo v L, na diagonali so same 1
4 -preostali elementi a&; v zgornjem trikotniku so
elementi matrike U
5
6 for k=1,...,n—1
7 for i=k+1,...,n
8 Uik = aik/axk
9 for j=k+1,....n
10 ajj = ajj — E;kakj
11 end
12 end
13 end
Izrek
Stevilo radunskih operacij (+, —, -, :) za izradun LU razcepa

matrike A je 3n3 + O(n?).
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Prema substitucija in Stevilo operacij

1 -Vhod: spodnja trikotna nxn matrika L =[{;; in
vektor b = [b];
-Izhod: resitev y sistema Ly=b>b

y1 = b1/l
for i=2...n
s =0b;
for j=1...i—1
s =s— 4y,
end
yi = 8/l
end

© 0O N o o H~ W N

- o

Izrek
Stevilo radunskih operacij (+, —, -, :) za resitev sistem Ly = b je

n@.
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ReSevanje sistema Ax = b prek LU razcepa:

1. Izragunamo A = LU. Cena: £n® + O(n?).

2. ReSimo Ly = b s premo subsitucijo, tj. od y; proti yx.
Cena: n> —n.

3. Redimo Ux = y z obratno subsitucijo, t. od x, proti x;.
Cena: n?.

Cena preme substitucije je za n operacij manj$a kot cena obratne
substitucije, saj imamo ne diagonali L same enice in prihranimo v vsaki
spremenljivki eno deljenje.
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ReSevanje sistema Ax = b prek LU razcepa

Primer
o 1 3 -4 8
4 1 -4 7 14
A=l2 3 5 _3|" b=| 7
o 2 7 9 16
1 0 00 21 3 -4
2 1 0 0 01 2 -1
Lh=14 2 1 0o|'Y=lo 0 2 3
111 00 0 1

2. Resimo Ly = b indobimoy=(8 2 -5 —1)'.
3. Resimo Ux =y indobimox=(1 -1 1 —1).
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Obstoj LU razcepa matrike
V nadaljevanju se bomo ukvarjali z obstojem in stabilnostjo LU
razcepa.

Problemati¢na sta npr. matriki
0 2 3 1077 2 8
A=14 5 6], B=| 4 5 6],
7 8 9 7 8 9

saj je 1077 pod strojnim e. Da se natanéno povedati, kdaj LU razcep
obstaja.

Podmatriki matrike A € R"*", zozene na prvih k vrstic in stolpcev, pravimo
k—ta glavna vodilna podmatrika.

Izrek (Obstoj LU razcepa)
Za n x n matriko A sta nasledniji trditvi ekvivalentni:
1. LU razcep matrike A obstaja in je enoli¢en.

2. k-ta glavna vodilna podmatrika matrike A je obrnljiva za
vsakk =1,...,n.
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LU razcep z delnim pivotiranjem

Pri delnem pivotiranju pred eliminacijo v j-tem stolpcu
primerjamo elemente

ajj, jt1ji-- - anj,

nato pa zamenjamo j-to vrstico s tisto, ki vsebuje element z
najvecjo absolutno vrednostjo.

Menjava j-te in k-te vrstice pa je
Py, ki se od identitete razlikuje le v j-ti in
k-ti vrstici, ki sta zamenjani:

ij = Ip— Ejj — Exx + Ejk + Ekj-

Tu so Ej; standardne koordinatne matrike (1 v i-ti vrstici in j-tem
stolpcu in 0 drugje).
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LU razcep z delnim pivotiranjem - algoritem

1 -Vhod: A =([a];j nxn matrika

2 -Izhod: permutacijska matrika P, spodnja in
zgornja trikotna matrika L in U, da je
PA=LU

3

4 P in L identicni nxn matriki

5 for k=1,..., n—1

6 poisci g-to in k-to vrstico, ki zadosca

|aqk| = MaXkLpg<n |apk|

7 zamenjaj g-to in k-to vrstico v matrikah A,P

in strogem spodnjem trikotniku L

8 for i=k+1,..., n

9 Lk = ai/ ak

10 for j=k+1,....n

11 ajj = ajj — fZ,-kak,-

12 end

13 end

14 end
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LU razcep z delnim pivotiranjem

Izrek (O ragunski zahtevnosti LU razcep z delnim pivotiranjem)

Stevilo radunskih operacij (+, —, -, :) za izradun LU razcepa z
. . . . . 2

delnim pivotiranjem je 5n® + O(n?).

Dodatno delo pri LU razcepu z delnim pivotiranjem je O(n?) primerjanj in

menjav.

ResSevanje Ax = b prek LU razcepa z delnim pivotiranjem:
1. lzragunamo PA = LU. Cena: $n® + 0(n?).
2. Redimo Ly = Pb s premo subsitucijo. Cena: n® — n.
3. Resimo Ux = y z obratno subsitucijo. Cena: n?.

Izrek (Obstoj LU razcepa z delnim pivotiranjem)

Za n x n matriko A sta naslednji trditvi ekvivalentni:
1. LU razcep matrike A z delnim pivotiranjem obstaja.
2. Matrika A je obrnljiva.
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Ax = b prek LU razcepa z delnim pivotiranjem

Primer.
2 1 3 -4 8
—4 1 -4 7 —14
A=l2 3 5 _3 b=1| s
-2 -2 -7 9 —16
1 0 0 O -4 1 -4 7
-1 1 0 0 o 5§ 3 !
. L=| ;2 LU= 2 2
%1 71% 11 o 0 0 7? ?Tg
2 5 8 | 0 0 0 3
01 0 O
0 0 1 O
P= 0 0 0 1
1 0 0 O

2. Re$imo Ly = Pbindobimoy = (—14 0 —9 —1).
3. Redimo Ux = yindobimox=(1 -1 1 —1)".
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LU s kompletnim pivotiranjem

Pri kompletnem pivotiranju pred eliminacijo v j-tem stolpcu poi§¢emo element
z najvecjo absolutno vrednostjo v podmatriki A(j : n, j : n) in nato izvedemo
ustrezni menjavi vrstic in stolpcev.

Dodatno delo pri LU razcepu s kompletnim pivotiranjem je O(n®) primerjanj in
menjav. Torej je skupna cena precej drazja od LU razcepa z delnim
pivotiranjem. Ker bomo videli, da je LU razcep z delnim pivotiranjem
statisticno numeri¢no stabilen, se v praksi kompletno pivotiranje
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Stabilnost LU razcepa matrike A
Sistem Ax = b smo resili prek LU razcepa in dobili priblizek X. Racunali smo
v treh korakih:

1. lzraCun LU razcepa: A+ E = LU.
2. Prema substitucija: Ly = b.
3. Obratna substitucija: UX = .

Izkaze se, da je (teoreticno) nestabilen samo prvi korak.

Spomnimo se, da z u oznacujemo osnovno zaokrozitveno napako 2~ kjer je
m dolzina mantise. Z |A| = [|a;l];; oznaCimo matriko absolutnih vrednosti
vhodov matrike A = [a;l;;

Izrek ( Ocena absolutne napake pri izradunu LU razcepa )

Naj bo A € R™" obrnljiva matrika, pri kateri se izvede LU
razcep brez pivotiranja. Za izracunani matriki LU velja

A = LU+ E, Kjer je

IE| < 3(n—1)u (|A| n |E|\U|) +O(U?). Dokaz

59/170


https://github.com/matfilip/matfilip.github.io/blob/main/Stabilnost_LU_razcepa.pdf

Stabilnost LU razcepa matrike A z delnim pivotiranjem

Iz zgornjega izreka sledi
|Elle < 8(n—1)u- (1A]loo + (L1 Tlac ) + O(?)
<3(n=1u- (1Al + I T)c ) + O(P)

<3(n—1)u[|Al +8(n—1)n||Ul| + O(u?),
kjer smo v drugi neenakosti upostevali submultiplikativnost, v tretji neenakosti
pa to, da so pri LU razcepu z delnim pivotiranjem vsi elementi matrike L
navzgor omejeni z 1. Zato velja ||L || < n. Torej je relativna napaka v
supremum normi navzgor omejena z

[[Elloo
1Al

Ul

+ O(UP).
Al

<3(n—1Nu+3(n—1)nu-

Izrek ( Ocena relativne napake pri izracunu LU razcepa )

Pri LU razcepu z delnim pivotiranjem velja ocena relativne
napake:

[Elloo
1Al oo

0]

<3n—Nu+3(n—1)nu-
[IA]oo

+0O(U?).
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LDL razcep simetricne matrike A

Trditev
Naj bo
A=AT
n x n simetriéna matrika in A = LU njen LU razcep. Ce je D

diagonalna matrika, katere diagonala se ujema z diagonalo
U-ja, potem je U= DL in

A=LDLT

Dokaz. Velja
LU=A=AT=(LU)T=U"L".

Z mnozenjem te verige enakosti z leve z L~ in z desne z (LT)~' dobimo
ULH'=L""U" =D.

Ker je leva stran zgornja trikotna, desna pa spodnja trikotna, je D diagonalna
matrika. Torej velja
A=LU=LDL".
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Razcep Choleskega pozitivno definitne matrike A

Izrek (Razcep Choleskega)

Naj bo A simetri¢na in pozitivno definitna matrika, tj. za vsak
x # 0 velia xT Ax > 0. (ekvivalentno, vsaka lastna vrednost je
> 0) Potem obstaja spodnjetrikotna matrika V, da velja

A=V

Temu razcepu pravimo razcep Choleskega matrike A. Matrika
V je enaka V := LD'/?, kjer sta L in D matriki iz LDL razcepa
matrike A.

Dokaz. Za obstoj je potrebno preveriti samo to, da D'/? res lahko
izraunamo, tj. da so diagonalni elementi matrike D pozitivni. Da dobimo i-ti
element na diagonali D, izratunamo x” Ax za vektor x = (LT) e, kjer je &;
i-ti stolpec identitete. Ker je A pozitivno definitna, je x” Ax > 0.
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Razcep Choleskega - algoritem

A =[aj]jj je dana nxn matrika
ce se razcep v celoti izvede, je rezultat
spodnjetrikotna matrika V iz A= VVT

for k=1,..., n

k—1
Vkk = A\/8kk — D_j V;f,-
for j=k+1,...,n
for i=1,... k—1
ajk = ajk — VjiVki
end
Vik = ajk/ Vkk
end
end
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Razcep Choleskega
Izrek (Cena razcepa Choleskega)
Stevilo radunskih operacij (+, —, -, :) za izradun razcepa
Choleskega pozitivno definitne matrike A je %3 +0(n?).
Dokaz

Razcep Choleskega tako zahteva samo pol toliko operacij kot
LU razcep in je najcenejSi numericni nacin za ugotavljanje
pozitivne definitnosti simetricne matrike.

ResSevanje sistema Ax = b prek razcepa Choleskega:
1. lzragunamo A = VVT. Cena: $n® + O(n?).

2. Redimo Vy = b s premo subsitucijo. Cena: n® + O(n).
3. Resimo VTx = y z obratno subsitucijo. Cena: n?> + O(n).

Izrek (Stabilnost radunanja razcepa Choleskega)

Racunanje razcepa Choleskega je numeri¢no stabilna metoda.
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https://github.com/matfilip/matfilip.github.io/blob/main/Racunska_zahtevnost_razcepa_Choleskega.pdf

Predoloceni sistemi
AXx =D

» Normalni sistem
» QR razcep prek Gram-Schmidtove ortogonalizacije
» QR razcep prek Householderjevih zrcaljen;j
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PredolocCeni sistemi
Za matriko A € R"™™ n > m, in vektor b € R", iS¢emo vektor
x € R™, ki zadoS¢a:

Ax =b. (3)

Kadar je n > m, sistemu (3) pravimo predolocen, to¢na reSitev
pa najverjetneje ne obstaja. Zato nas navadno zanima reSitev,
ki v izbrani vektorski normi || - || minimizira ostanek, tj. zelimo,
da je |Ax — b|| ¢&im manjSe. Ce za || - || izberemo || - ||2, potem
se problemu rece linearni problem najmanjsih kvadratov:

Pois¢i x € R™, ki minimizira ||Ax — b||>. (4)

Primeri uporabe so:
>

>
>
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Primer (Kubigna interpolacija)
Dane so tocke (X1, Y1), - .., (Xn, ¥n). ISCemo pa kubiéni polinom
p(x) = asx® + axx® + arx + ay,
ki se podatkom najbolje prilega po metodi najmanjsih kvadratov. Torej iS¢emo
koeficiente ay, . . ., as € R, tako da je vsota

n
Z(élaxi3 + apx? +aix;+ao — yi)?
i

najmanjsa mozna.

To lahko napiSemo kot sistem

2

1 X1 X5 X a Yi

1 x2 x32 x5 a V2
B a2 -

1 x, x2 x8 as Yn,

ki ga reSujemo po metodi najmanjsih kvadratov.
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ReSevanje prek normalnega sistema

Trditev
Naj bo rank(A) = m. Resitev sistema (3) po metodi najmanjsih
kvadratov je x € R™, Ki resi t.i. normalni sistem:

ATAx =ATb. (5)

Dokaz

Tezava, ki se pojavi pri reSevanju (5), je numeri¢na stabilnost. Ra¢unanje
skalarnega produkta v sploSnem ni relativno stabilna operacija. Vhodi
matrike AT A pa so ravno skalarni produkti stolpcev A.
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https://github.com/matfilip/matfilip.github.io/blob/main/Predoloceni_sistem_prek_normalnega_sistema.pdf

Primer - linearna regresija

ISCemo premico, ki se najbolje prilega podatkom

po metodi najmanjsih kvadratov. Premica je oblike
y =a+ bx.

Torej sta spremenljivki a in b. Sistem lahko zapiSemo v obliki

1 X1 Y1
1 X2 a Yo
)
N——— )
1 Xp X Yn
| ——
A b

Vemo, da je reSitev (6) enaka

n —1 n
)?_(ATA)1AT5_|: n Z,‘:1Xi :| |: Zi:1yi :|

YiaXi XX Y XY
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ReSevanje normalnega sistema - razcep Choleskega

Ce je matrika A € R™™ ranga m, potem je matrika ATA
pozitivno definitna (kar pomeni, da so vse lastne vrednosti > 0)
in sistem ATAx = ATb lahko re§imo s pomogjo razcepa
Choleskega:

—

. IzratunajB=ATAinc=ATb.

Cena: nm? + O(mn). (Zadosti je raéunati zgornjetrikotni del AAT.)
. Izra6unaj razcep Choleskega B = VVT. Cena: Im® +0(m?).
. Redi Vy = ATb. Cena: 0(m?).
. ReSi Vix =y. Cena: 0(m?).

A W DN

Skupna cena: nm? + tm® + O(nm).
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QR razcep

QR razcep matrike A € R"™™ sta ortogonalna matrika
Q € R™™ (QTQ = I,) in zgornjetrikotna matrika R € R™*™, ki
zadoScCata

A =QR. 7)

Iz (7) sledi, da sta stolpi¢na prostora matrik A in Q enaka. Pogoj
ortogonalnosti matrike Q pa pomeni, da so njeni stolpci normirani (tj. dolzine
1) in paroma pravokotni. Ce ozna&imo z a, . . ., amingi, ..., Qm Stolpce
matrik A in Q ter R = [r;];;, potem veljajo zveze:

q 13
1 = —3a,
4

1
Qe = — (a2 — r2q1),
22

1
Om = —(@m — MmG1 — - - — Fm—1,mQm—1)-
rmm
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Iz (8) lahko izpeljemo enega od nacinov za izracun QR razcepa, tj. z uporabo
Gram-Schmidtove ortogonalizacije (GSO)

A=1[ay,...,am] je nx m matrika s stolpci aj,...,am
Rezultat sta matriki g=I[qgy,...,gml in R =[], da je
A=QR

r1 = [larl2

= ,11*181

for j=2,...,m
g =g
for i=1,...,j
rj=q/
g = q; — liqi
end
ri = g2
9=14

end
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Uporaba QR razcepa za reSevanje sistema (3)

Izrek (Ragunska zahtevnost GSO)

Stevilo radunskih operacij (+, —, -, :) za izradun QR razcepa z
GSO je

~ 2nm?.
Dokaz

Trditev (Regevanje sistema prek QR razcepa)

Najbo A € R"™™ inrank(A) = m. ReSitev sistema (3) po
metodi najmanjsih kvadratov je enaka resitvi zgornjetrikotnega

sistema

Rx = Q"b, 9)
kjer je A = QR za ortogonalno matriko Q in zgornjetrikotno
matriko R.

Dokaz

73/170


https://github.com/matfilip/matfilip.github.io/blob/main/Racunska_zahtevnost_GSO.pdf
https://github.com/matfilip/matfilip.github.io/blob/main/Resitev_predolocenega_sistema_prek_QR_razcepa.pdf

Householderjeva zrcaljenja (HZ)

Pri GS postopku izraunamo
k—1
v« ac— ) (g'adq.
i=1
Ce je a skoraj v span{q;}, potem

k—1

Zq,ak A~ ak,

i=1
zato je razlika majhna: odStevamo dve veliki, skoraj enaki Stevili =
katastrofalna izguba pomembnih Stevk.
Zato zelimo QR razcep narediti na drugacen nacin z uporabo ortogonalnih
matrik.
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Zrcaljenje preko hiperravnine, ki je pravokotna na vektor
w € R™, imenovano Householderjevo zrcaljenje (HZ), je
predstavljeno z matriko

[ — LWWT,

w py
lwl3

kier I = In.
Trditev (Lastnosti HZ)
» P, je ortogonalna: P] = Py, in P2 = |.
> Zax = aw + U, kjer jeu L w, velja Pyx = —aw + u.

Matrike P, ne izraCunamo, ampak zadosca hraniti le vektor w,
saj je

.
(

Pux = x W' X)w.

Iwl3
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Trditev

Naj bosta x,y € R™ s ||x]|l2 = ||y|l2- Zaw = x — y velja

Pyx = (L—2r3ﬂ2>x =y.

Dokaz: ZapiSimo

T

wix=(x—y)"x=|x|3—x"y,

w3 = lIx = ylI3 = X113 + [IyI3 —2x Ty = 2(|x[5 — x"y),

: . WX
kjer smo uporabili ||x||2 = ||y||2- Zato je w2 =5 in
2

w'x

Puyx=x-2-
Iw|3

W=X—Ww=Yy.
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Lemma

Najbox =[xy Xz --- xm}T ERM e =[1 0 - O}T in
p = ||x||l2. Definirajmo wi+ = x F p e1. Tedaj velja
2
wells = 2p(pFx1) = 2|x[l2(/Ix]l2 F x1)-
Dokaz:
m
w5 = |Ix F per|5 = (x1 Fp)* + )_xF.
i—2
Ker je p? = ||x||53 = x¢ + 3", x?, dobimo
m m
w5 = x§F20x1+074+)_ xF = (XF + Y xP) +p°F20x1 = 20°F20xy
i—2 i—2
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Za numeri¢no stabilnost izberemo predznak, ki pove€a p F x;: €e je x4 < 0,
vzamemo w_ = X — pey (izraz p — x; = p + |x¢| je vedji); Ce je x; > 0,
vzamemo w, = X + pey (izraz p + x4 je vedji).

IzraCun QR razcepa prek HZ:

Matriko A preoblikujemo v zgornjetrikotno R z mnozenjem z leve z m — 1
HZ-ji:

1. S H; preslikamo prvi stolpec A v veckratnik e;.
2. Drugi stolpec H;A od diagonale navzdol v veckratnik e, z ﬁg =1® H.

3. '[retji stolpec I:IZH1A od diagonale navzdol v veckratnik e; z
Hz = I & Hs.

4. Nadaljujemo ta postopek:

R = HcHc - -H.H A, Q=HTH ---H.

Za resSitev predoloCenega sistema preko metode najman;jsih
kvadratov A € R"*™ (n > m), reSen s Householderjevimi
zrcalienji (A = QR, QTb =y, Rx =), je cena ~ 2nm? — 2m®.
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lzraCun QR razcepa prek HZ - graficno

X X X X X
0 x x x x

X X X X X
0 x x x x
0 x x x Xx
0 x x x x
0 x x x x

|

H
~~
Hi

|

0 0 x x x
0 0 0 x x
0 0 0 x «x

>A3(

4>

~~
L 0
0 Hs

[

X X X X X
X X X X X
X X X X X
X X X X X
X X X X X

X X X X X

0 x x x x

X X X

X X X

X X X

o O o

o O o

X X X X X

0 x x x x

0 0 x x x

0 0 0 x x

0 0 0 0 x

A=

Ay =

)

0
0 H

s
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Primerjava dveh :

3

N -
Cholesky: |~ nm= + sm

QR (Householder): |~ 2nm? — 2m® |

Zakaj Householder QR namesto Cholesky pri reSevaniju
normalnega sistema?:
> k(ATA) =«(A)? = relativna napaka ~ k(A)%¢. Pri QR je
~k(A)e.
> Stabilnost: za Householder QR velia QT Q = 1+ O(e).
> lzognemo se tvorjenju A T A: manj kopitenja
zaokrozitvenih napak
Ce je n = m dobimo pri QR (Householder) %n‘? (tukaj boljse
uporabiti LU razcep z delnim pivotiranjem)
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Resevanje nelinearnih
enacb in optimizacija

x f(x) =0
* fi(X-|,X2,...,Xn) :O, i=1....n
x* min{f(x): x € K CR"}

> Ena enadba v eni spremenljivki: Bisekcija, tangentna metoda,
sekantna metoda, navadna iteracija

> Sistem n enacb v n spremenljivkah: Newtonova in Jacobijeva
iteracija
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Motivacija
Problem: Naj bo dana funkcija f(x). PoiSCi x, ki zadoSCa

f(x) =0.

N

A~ \

> kot sistemi
linearnih enacb.

» NicCel polinoma stopnje 5 ne moremo zapisati analiti¢no.

> Kako reSevati take probleme? Z iterativnim postopkom, pri
¢emer se reSitvam ¢im bolj priblizamo.
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Osnovna strategija reSevanja

1. Skiciraj funkcijo.
> Postavimo zaCetno domnevo, kaj je lahko nicla.

> Nicla x gotovo obstaja na intervalu [a, b], ¢e imata f(a) in
f(b) razlicna predznaka in je funkcija f zvezna na [a, b].

> Toda: Sprememba predznaka funkcije ne pomeni vedno,
da je na tem intervalu nicle, kajti lahko imamo na intervalu
singularnost:

i@ ’\\ f@ // !
0 t 1 0 1 3 t

a b a b
/(b)J[ \,\ f(b)“~ //

2. Zatnemo z in uporabimo nek
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Konvergencni kriteriji za x

Zaustavitveni kriterij je odvisen od narave problema, ki ga
reSujemo:

> Lahko nas zanima, kdaj velja

> Lahko pa nas zanima, kdaj velja

» Se najbolje pa je zahtevati izpolnjenost
hkrati.

f)

true root

tolerance F

on f(x) t t X
<‘> tolk

onx
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Primerjava obeh konvergencnih kriterijev

Ce je f'(x) majhen v okolici nigle, je laZje zadostiti toleranci na
funkcijsko vrednost.

f(x)
‘ | \

Ce je f’(x) velik v blizini ni¢le, je mozno zadostiti toleranci na
dolzino intervala, ¢etudi je |f(x)| Se vedno velik.

f(x)

U
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Povezava med obema kriterijama

Vprasanje: Kako sta kriterija na x in f(x) povezana med sabo?

Ko x, in x;, konvergirata proti x*, gre razmerje

f(xp) — f(Xa)

Lt
[P— proti (x™)

Zato lahko pri¢akujemo, da velja
f(xp) — f(Xa)l = |f'(x™)lIXp — Xal,

ko X5 in xp konvergirata proti x*.

Zakljuéek: |f'(x*)| doloCa povezavo med kriterijema.
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Bisekcija
Razpolovis¢e zaCetnega
intervala [a, b] je tocka

Postopek:
1. Pois¢i razpolovisce.

2. lzmed dveh moznih
intervalov izberi tistega,
kjer ima funkcija razli¢no

.....

3. Nadaljujemo s prvim
korakom.

4. Ustavimo se, ko je
interval krajSi od naprej
predpisane tolerance.
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Algoritem za bisekcijo

Vhod: funkcija f, krajisci a, b, toleranca tol

|
2 Izhod: priblizek x* za f(x)=0 z |x— x*| < tol
3

4 for k=12, ...

5 Xm=a+ (b—a)/2

6 if sign (f(xm)) = sign(f(a))

7 a = Xm

8 else

9 b= xpm

10 end

11 if |b-al<tol, stop

12 end
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Hitrost konvergence in raunska zahtevnost
Naj bo &, velikost intervala po n-tem koraku bisekcije. Potem

velja

dg =b—a 6—16 6—16—16 = 1n6
0 — [} i — 2 0 2 — 2 1= 4 0 LECEE) n — 2 0
&n 1" &n
— —=(=] =277 ali n=lo —
5 <2) 82\ 3,
n [ Stevilo izracunov
8o funkcijskih vrednosti
5 3.1 x102 7
10 | 9.8 x10~* 12
20 | 9.5%x 1077 22
30 | 9.3x 1071 32
40 | 9.1 x 1013 42
50 | 8.9 x 1018 52
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Navadna iteracija
Pri metodi navadne iteracije osnovno enacbo

f(x)=0
preoblikujemo v ekvivalentno
X =g(x)

in izvajamo iteracijo
Xri1 = 9(Xr)

pri izbranem zacetnem priblizku Xp.
Nekatere mozne izbire za iteracijsko funkcijo g so denimo

g(x) = x —f(x)

g(x)=x—Cf(x), C#0
g(x) = x—h(x)f(x), h(x) #0.
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Konvergenco navadne iteracije opisuje naslednji izrek.

lzrek
Naj iteracijska funkcija g na intervalu | = [x — &, « + 8] zadosc¢a

pogoju
lgx)—gy)l<mix—yl, x,yel 0<m<1.
Potem za vsak xp € | zaporedje
Xr1=9(x), r=0,1,...
konvergira k «.. Velja
IXr — o < m'|xo — «f

in

IXrp1 — o < IXr — Xr—11.

1—m
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Posledica )
Naj bo g(«) = « in g zvezno odvedijiva pri «. Ce je |g’(x)| < 1,
potem obstaja taka okolica | za «, da za vsak xy € | zaporedje

Xr+1:g(Xr), I’:0,1,

konvergira k «. O hitrosti konvergence v blizini « odlo¢a Stevilo
g'(a).

Definicija

Naj zaporedje (x;);°, konvergira k oc. Pravimo, da je red

konvergence enak p, Ce obstajata konstanti Cy, C> > 0, da za
dovolj pozne &lene zaporedja velja

Cilxr — P < [Xp1 — o < Colxr — afP.
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Lema
Naj bo iterativna funkcija g v okolici negibne tocke o = g(«)
p-krat zvezno odvedijiva in naj bo

9% ()| =0 zak=1,2...,p—1  ter gP(a)20.

Potem ima iterativna metoda
X1 =9(), r=01,...,

v blizini resitve « red konvergence p.
Posebni primeri konvergence so:
» p =1: linearna (na vsakem koraku pridobimo konstantno
mnogo novih to¢nih decimalk),
» p = 2: kvadrati¢na (na vsakem koraku se Stevilo to¢nih
decimalk podvoiji),
» p = 3: kubi¢na (na vsakem koraku se Stevilo to¢nih
decimalk potroji),
» 1 < p < 2: superlinearna (hitrej$a od linearne in
pocasnej$a od kvadrati¢ne).
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Primer
Ena od moznih iteracijskih funkcij za racunanje /a, a > 0, je
x°+a

2x

Ocitno je g(va) = va, g'(a) =0ing”(+/a) # 0. lterativna
metoda

alx) =

Xr+1 = 9(Xr)

ima torej v blizini \/a kvadrati¢no konvergenco.
Izberimo a = 10 in xg = 3. Potem je

r| X

0 | 3.00000000
1] 3.16666667
2 13.16228070
3|3.16227766

V zadnjem stolpcu so to¢ne decimalke, ki se na vsakem koraku

priblizno podvojijo, kar potrjuje kvadraticno konvergenco. aroe



Tangentna metoda

Ideja za tangentno metodo je preprosta: nov priblizek je
presecisce tangente v prejsnjem priblizku z abscisno osjo.
Ce torej reSujemo enacbo

f(x) =0,
se zaporedje priblizkov glasi
f(xr)
f(xr)’

Oc¢itno je to poseben primer navadne iteracije z iteracijsko
funkcijo

r=0,1,...

Xr41 = Xr —
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Za konvergenco tangentne metode velja:

Ce je ni¢la « funkcije f enostavna, je konvergenca vsaj
kvadratitna. Kvadrati¢na je, ¢e je f"/(x) # 0, sicer je vsaj
kubi¢na.

lzrek

Naj bo « enostavna nicla dvakrat zvezno odvedijive funkcije f.
Potem obstajata okolica | tocke « in konstanta C, da tangentna
metoda konvergira za vsak xo € | in pribliZki x, zados¢ajo oceni

IXri1 —of < C(Xr—(x)z-

Izrek

Naj bo f na | = [a, oo) dvakrat zvezno odvedljiva, naras¢ajoca
in konveksna funkcija, ki ima ni¢lo « € I. Potem je « edina nicla
funkcije f na | in za vsak xo € | tangentna metoda konvergira k
.
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Sekantna metoda

Pri tangentni metodi poleg vrednosti potrebujemo tudi odvod.
Ce ta ni na voljo ali ga tezko raCunamo, ga aproksimiramo z
diferencialnim kvocientom

f(xr) — f(xr—1)
Xr — Xr—1

Tako dobimo sekantno metodo

_ f(xr) (Xr — Xr—1) .
ST ) k) 0T

Izkaze se, da je red konvergence zanjo priblizno p ~ 1.62
(superlinearna).
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Primerjava metod: zahteve

> Bisekcija
> Zaletniinterval [a, b] z f(a) - f(b) < 0.
> Ne potrebuje odvoda.
> Tangentna metoda
> Potrebuje zacetni priblizek xo.
» Potrebuje odvod f/(x).
> Sekantna metoda

> Potrebuje dve zacetni tocki xp, 1.
» Odvod nadomesti s sekanto.
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Primerjava metod: Hitrost konvergence in robustnost

Hitrost konvergence
» Bisekcija: linearna, poCasna, dolzina intervala se
prepolovi v vsakem koraku.
» Tangentna: tipi¢no kvadratna konvergenca (zelo hitra, ¢e
je xp blizu nicle).
» Sekantna: nad-linearna konvergenca (red ~ 1,618),
hitrejSa od bisekcije, nekoliko potasnejsSa od tangentne

metode.
Robustnost
» Bisekcija: zelo robustna, konvergira, Ce je f zvezna in
f(a)-f(b) <O.
» Tangentna: obcutljiva na slab xp ali majhen f’(x), lahko
divergira.

> Sekantna: manj robustna kot bisekcija, bolj kot tangentna;
mozne tezave, Ce je f(xx) — f(xk_1) zelo majhen.
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Sistemi nelinearnih enacb

ResSujemo sistem nelinearnih enacb:

Ce definiramo
f=(f,..., f,) :R" - R",

potem lahko sistem na kratko zapiSemo kot
f(x) =0.

posplosSitev tangentne metode,
posplosSitev navadne iteracije.
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Newtonova iteracija
Pri Newtonovi iteraciji tvorimo zaporedje priblizkov

X = X — g (x ) (x|

kier je J¢(x(") matrika prvih odvodov preslikave f, ki ji pravimo
Jacobijeva matrika:

ofh .. 0f

0 X1 0Xp
J(x)=| Pl (X))

ofy .. 0fh

0X1 0Xp

V praksi pa ne raunamo inverza Jf( 1)=1 ampak namesto
tega reSimo sistem
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1. Funkcije f; razvijemo v Taylorjevo vrsto:

fi(x + Ax) = fi(x Z X)AXk+..., i=1,...,n.

2. Zanemarimo Clene viSjega reda in ena¢imo f;(x + Ax) = 0.
3. Dobimo zgornji sistem.
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Jacobijeva iteracija

1. Sistem f(x) = 0 preoblikujemo v ekvivalentno obliko

g(x) =x,
kjer je g : R" — R".
2. lzberemo zacetni priblizek

x© ¢ R".

3. Racunamo zaporedije priblizkov

X1 = g(xn),
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Izrek (Prvi konvergenéni izrek Jacobijeve iteracije)
Naj g : R" — R" na nekem obmocju O C R" zadosca:
1. g(Q) c Q.
2. |g(x)—g(y)l| <m|x—y| zavsakax,y € Q innek0 < m< 1.
Enacba
g(x) =x

ima na obmodju Q eno samo resitev & in zaporedje x"1) konvergira proti §
za poljuben zacetni priblizek x'© € Q. Velja se

) = x.

) — g <

Izrek (Drugi konvergencni izrek Jacobijeve iteracije)
Najg:R" — R" zvezno odvedijiva v negibni tocki & in naj bo ||Jg(&)[| < 1.

Potem obstaja zaprta okolica Q C R" fiksne tocke &, tako da zaporedje x"+")
konvergira proti & za poljuben zacetni priblizek x'© € Q.
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Ceprav obstajajo izreki o konvergenci Newtonove metode
(denimo Kantorovicev), je njihove predpostavke v praksi tezko
preveriti. Konvergenco ponavadi zagotovi Ze dober zacetni
priblizek.

Kadar je sistem enacb velik, je z Newtonovo metodo veliko
dela. Pohitrimo jo lahko tako, da Jacobijevo matriko na novo
raCunamo samo na vsakih nekaj korakov. Taki metodi reCemo
kvazi-Newtonova metoda.

Znane so tudi variante, ko Jacobijevo matriko ocenimo brez
poznavanja parcialnih odvodov (Broydenova metoda).
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Polinomska interpolacija in
aproksimacija
* PoiS¢i polinom p, da je
p(X,') =V | = O, 1,..., n.

+ Pois¢i polinom p stopnje k, da je
> 1o llf(xi) — p(xi)||2 minimalno.

Interpolacija v standardni bazi

Interpolacija v Lagrangeovi bazi

Interpolacija v Newtonovi bazi

Polinomska aproksimacija, ortogonalni polinomi
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Uvod v interpolacijo in aproksimacijo
Aproksimirati zelimo funkcijo f(x) z funkcijo g(x).

Tipi aproksimativnih funkcij: Polinomi, odsekoma polinomske
funkcije, racionalne funkcije, trigonometri¢ne funkcije,
eksponentna funkcija, itd.

Vprasanje: Kako aproksimirati f(x) z g(x)? V kakSnem smislu
je aproksimacija dobra? Imamo vec kriterijev:
1. Interpolacija: g(x) mora imeti iste vrednost kot f(x) na dani
mnozici tock.
2. Metoda najmanjsih kvadratov: g(x) se mora ¢im bolj
prilegati f(x) v smislu 2-norme, {j.

b
J f(t) — g(t)Bdt mora biti &im manjge.
a
3. Aproksimacija Cebigeva: g(x) se mora &im bolj prilegati
f(x) v smislu supremum norme, tj.
minimizirati Zelimo  max |f(t) — g(t)|.

tela,b]
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Interpolacijski polinom v standardni bazi
Dani so naslednji podatki:

n+1 tock xo,..., Xp invrednosti yp,..., Yn-
IS¢emo polinom
p(X) = ap + aix + apx® + - - + anx",
stopnje n, ki zados¢a
p(xo) =Yo. px1)=y1, .... P(Xn)=yn (10)
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Dobimo sistem

o+ a1Xo + X5 + -+ + anx = Yo,
ot anX{ =y,

ap + a1 x4 + 82X12 +

ao + arXn + @X3 + -+ anXl = yn.

Polinomu p(x) pravimo

V matri€ni obliki lahko sistem (11) zapiSemo kot

kjer je
1 X0
1 Xq
A= 1|1 X
|1 Xn

Ax =b,

ap
ai
ao

an

Yo
14
Yo

Yn

(11)
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Matriki A pravimo Vandermondova matrika na to¢kah

X0, -

.., Xn- Velja

det(A)= J] (xi—x)

ogj<ign

Posledica (O obstoju in enoli¢nosti interpolacijskega polinoma)

>

>

—_

Ce sotocke x;, i =0, ..., n, paroma razliéne, ima sistem
enoliéno resitev.
Polinom stopnje najveé n skozi n + 1 tock je en sam.

. Kako racunsko zahtevno je reSevanje sistema (11)?

Ali je sistem (11) numeri¢no obcutljiv?

. Racunanije interpolacijskega polinoma s pomocjo
Vandermondove matrike ni poceni (5n3 + O(n?) operacij).

Sistem je lahko ze pri majhnem Stevilu tock (npr. 10) zelo
obcutljiv za numeriCne napake.
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Interpolacijski polinom: Lagrangeova in Newtonova
baza

Namesto uporabe

je bolje uporabiti eno od naslednjih baz:

» Lagrangeova baza:
(X=X1)--(X=Xn) _(X—Xo) (X—X2)---(X—Xn) (x=Xo)-(X—Xn—1)

(Xo—X1)---(Xo—Xn) " (X1—x0) (X1 —X2)---(X1—Xn) " """ " (Xnp—Xo)---(Xn—Xn_1) "

» Newtonova baza:
1, X—Xg, (X —Xo)(X—X1),..., (X —Xg) -+ (X — Xp—1).

Obe zgornji bazi sta stabilni, Newtonova pa je cenejSa za
racunanje v primeru dodajanja novih interpolacijskih tock.
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Interpolacijski polinom v Lagrangeovi bazi

Primer
Poiscéi polinom najniZje stopnje, ki interpolira naslednji tocki:

x| 14 125
y| 387 39
Dobimo
x—1.25 x—14 4

Zapisali smo p(x) v obliki

(X) . X — Xq i X — Xo
pix) = Xo— X Yo X1 —Xq Y1
—_— —
£o(x), £ (x),
€o(x0)=1,€0(x1)=0 €1 (x0)=0,¢1 (x1)=1
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Danih imamo n + 1 tock
(X01y0)1 (X1:Y1) vvvv (Xn,}’n)-
Cilj je najti Lagrangeove bazne polinome stopnje najve¢ n, ki
zados$c¢ajo
P N

i) = { 1, j=i

Torej je
tix)= G J[x=x). i=0,....n
konstanta J#!

i—ti Lagrangeov bazni polinom je

n
X—Xj
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Primer

Poisci enacbo parabole v Lagrangeovi obliki, ki gre skozi tocke

p2(x)

(X=x1) (X—x2)
(Xo X1) Xo—X2)

Yolo(x) + y1€1(x) + y2l2(x)

(x4 1)(x —2) +0(x —1)(x —

2)+ 4(x—1)(x+1).
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Interpolacijski polinom v Newtonovi bazi

Newtonov interpolacijski polinom na to¢kah xg, X1, Xo, . . ., Xn je
oblike
Pn(x) = Cg + €1 (X — Xo) + Ca(X — Xo) (X — X1) + ...
+ Cn(X — Xo) (X — X1) -+ (X — Xn—1).
o)

1,X—Xg, (X —Xo)(X —X1),..., H(X—X,').

Newtonova baza proti Lagrangeovi bazi:

Prednost Newtonove baze pred Lagrangeovo je vtem, da se z
dodajanjem novih to¢k xp.1, ..., Xn+m VSI Ze izraCunani
koeficienti ¢y, . . ., ¢, ne spremenijo.

V primeru zlepkov, ko imamo v naprej dolo¢en n, so
Lagrangeovi polinomi primernejsi, saj imamo koeficiente Ze
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Interpolirajmo podatke (X, ¥o), (X1, Y1), (X2, ¥2) v Newtonovi
obliki.

Poiskati moramo v polinomu
p2(X) = Co + C1(X — Xo) + C2(X — Xo) (X — X1).

Iz n podatkov dobimo sistem n linearnih enacb v neznanih
koeficientih:

Xo: Yo=C+0+0
X1: Y1 ==Co+ (X1 —xo)+0
Xo: Y2 =Cp+ Ci(Xa— Xo) + Ca(X2 — Xo) (X2 — X1)

Ali v matri¢ni obliki:

1 0 0 Co Yo
1 X1 —Xo 0 Ci| =W
1 Xo—Xo (Xo—Xo)(x2a—X1)]| |C2 Y2
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Ker je matrika spodnije trikotna, potrebujemo samo O(n?)
operacij:

Co = Yo=f(xo),
o - Y= _ fx1)—f(x)
! X1 — Xo X1 — Xo '

Yo — Co — (X2 — Xo)Cy
(X2 — X1) (X2 — Xo)
f(X) — f(Xo) — (xp — Xo) X)=I10)

— X1—Xo
(X2 — x1) (X2 — Xo)
fO)—f(x1) _ f(x1)—f(xo)
Xo—Xq X1—Xo

X2 — Xo
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Deljena diferenca f[xo, ..., Xkl

|z zgornjega primera opazimo naslednji vzorec. Pojavljajo se
izrazi oblike:

(12)

Ce izraz (12) ozna&imo z oglatimi oklepaji kot , potem bi
na nasem primeru dobili:
f[x1, X2l — flxo, X1]

Co =f(x0), ¢ =flxo,x1], €= pra— :

To se da posplositi do rekurzivnega racunanja polinomov v
Newtonovi obliki.

Deljena diferenca f[xo, . . ., x| je vodilni koeficient (pri x¥)

interpolacijskega polinoma stopnje najvec k, ki se z f ujema v
toCkah xp, . .., Xk.
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Izrek (O koeficientin Newtonovega interpolacijskega polinoma)

1. Koeficienti Newtononovega interpolacijskega polinom p,
stopnje najvec n, ki se z f ujema v to¢kah xq, . .., Xn, SO
enaki

C,':f[Xo,X1,...,X,'], i:O,...,n.

2. Deljene diference povezuje formula

flx1,....Xnl — flX0, ..., Xn—1]
Xn — Xo '

flXg,....Xn] =

Dokaz
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https://github.com/matfilip/matfilip.github.io/blob/main/Deljene_diference.pdf

Primer. Konstruirajmo deljene diference za podatke (1, 3),
(3.13),(0,3), (2, 3).

Iz tabele deljenih diferenc preberimo interpolacijski polinom.

X f[] f[.v.] f[.v.,.] f[.,.,.y.]
113
1
2
3|13 1
2 4 1 3 5
1 )
013 -2
2 |7
2 |5
Interpolacijski polinom je tako
1 1 3 3
pg(x)_3+§(X—1)+§(X—1)<x—§)—2(x—1)(x—§>x.

Ce uporabimo spodnjo stranico trikotnika, pa dobimo px(x)
izrazen v drugi Newtonovi bazi:

p2(x) = g - g(x—Z) - %x—Z)x—Z(x—Z)x(x— g)
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Visanje stopnje aproksimacije
- ne izboljSa vedno aproksimacije funkcije s polinomom.
Znan je Rungejev primer, ko funkcijo

1

") =71%

interpoliramo na intervalu [—5, 5] z ekvidistantnimi toCkami, tj.

n—1

1
XO:_51X1:_5+10'E ..... Xp_1=—54+10-

, da se bo interpolacijski polinom
nasi funkciji. Izkaze pa se, da temu ni tako. Ce interpoliramo v
tockah CebiSeva

T ,
X,~—5cos<2(i_1)(n+1)>, i=0,..., n

pa z visanjem stopnje res dobimo boljSe prileganje.

,Xn:5.
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Napaka polinomske interpolacije

Ponavadi nas zanima razlika med vrednostjo funkcije f in
vrednostjo interpolacijskega polinoma p,, v neki tocki t:

X0, .-, Xnp in t:

|z enakosti f(t) = gn.1 (1), sledi

en(t) = pn(t) — f(t) = —flxo, x1, ..., Xn, t] | | (t—Xi).
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Izrek (O deljenih diferencah)

f(n+1 ) (5)

W zaneké& e [a, b].

f[Xo, X1, ..., Xn, 1] =
Dokaz

Izrek (Napaka polinomske interpolacije)

Naj bo f vsaj (n+ 1)-krat zvezno odvedljiva na intervalu [a, b] in
naj bo p,, interpolacijski polinom stopnje najve¢ n skozi tocke x;,
i=0,...,n, ki vse leZijo na intervalu [a, b]. Potem je za vsak

X € [a, b]

f(n+1)(£)

W(X—XO)'“(X—Xn),

f(X) — pn(x) =
kjer & leZi na intervalu [a, b].

Ce znamo odvod f("+1) na intervalu, ki nas zanima, omejiti,
lahko dobimo uporabno oceno.
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https://github.com/matfilip/matfilip.github.io/blob/main/Napaka_polinomske_aproksimacije.pdf

Aproksimacija po metodi najmanjsih kvadratov
Za funkcijo, podano v n tockah

iS¢emo polinom pk stopnje k < n, za katerega ima izraz

najmanij$o vrednost. Ce zapi$emo na dolgo:

Torej iS€emo ekstrem funkcije ve€ spremenljivk. 1z analize
vemo, da je potreben pogoj za ekstrem
0Eiso _ 9Eiso . 9Eisa _ |,
GEN 0a4 o 0ak
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Naj bo

Dobimo normalni sistem:

n
51
So

Sk

Sq
So
S3

Sk+1

So = Xo+. . +x2,

S2
S3
S4

Sk+2

Sk
Sk+1
Sk+2

Sok

ki pa je pri velikem Stevilu tock lahko

ap
ai
ao

ag

Sok = XK+ . +x2K.

anzo Yi
Z/;:o YiXi
2 -0 yixi2

Yo inik i
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Aproksimacija po metodi najmanjsih kvadratov

Do ekvivalentnega sistema bi prisli tudi z zapisamo prvotnega sistema v
obliki Ax = b in mu priredili normalni sistem AT Ax = ATb:

m m m
atary Xi+..+a, ) x'=) f(x),
i=1 i=1 i=1
m m m m
a) Xi+tary XF+...t+any x=) flx)x,
i=1 i=1 i=1 i=1
m m m m
a) XFt+a )y X+ tany xE=) f(x)x,
i=1 i=1 i=1 i=1

m m m m
ap Zx,” + a Zx,”+1 + .4 ak Zx,?” = Z f(x:)x!.
i i i= i=

Ta sistem lahko reSimo z Gaussovo eliminacijo, vendar je lahko pri veliko
toCkah . Cilj je problem preoblikovati v ekvivalentnega, vendar
bolje pogojenega. Resitev lezi v uporabi baze ortogonalnih polinomov.
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Zamenjava baze prostora polinomov

Ce bi namesto baze {1, x, .. ., x"} vzeli novo bazo polinomov

{go(x), 91(x), ..., gn(X)},
bi dobili sistem linearnih enacb:

a ) g50x)+ar) olx)gi(x)+...+an) Go(x)gn(x:) =D F(x)go(xi),
i—1 i—1 i—1 i—1
a0 ) gi(x)golx)+ar) gix)+...+an ) gi(x)galx) =D f(x)gn(x),
i= = i—1 i=1
a ) G(X)go(X)+a ) g(x)gi(X)+...+an ) golx)gn(x) =Y f(x)ga(x),

i=1 i=1 i=1

m
aoZgn Xi)do(Xi) + ar Zgn Xi)g1 (%) +anZgn ) =Y f(x)gn(x).
i=1

i=1 i=1

Zeleli bi izbrati bazo, v kateri bo ta . 1I8¢emo torej polinome
gj, za katere velja

> gix)gk(x) =0  zaj#k.
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Zgorniji sistem lahko zapiSemo tudi v matricni obliki:

(9o, Go) (Go.g1) .- (Qo.Gn) ao
(91.90) (91.91) ... (G1.9n) a
A= : : ' X=1.
(Go.0n) (01.) - (Gn Gn) a,

(f, gn)

kier je (f,g) .= > ", f(x;)g(x;). I8temo torej polinome g;, za katere velja

(13)

Zaporedju polinomov gy, . . ., On, za katere velja deg g; = j, vodilni koeficient g;
je 1in velja (13), pravimo zaporedje ortogonalnih polinomov (ZOP).

Resitev nadega problema je ZOP g; polinom p:

px)=) aglx), a=
i=0

128/170



Numericna integracija
Oceni |2 f(x)dx.

> Newton—Cotesova (NC) pravila: trapezno, Simpsonovo
pravilo

> Izbira koraka v NC pravilih
» Adaptivna NC pravila
» Gaussove kvadraturne formule
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Numeri¢na integracija
Nas cilj je izracunati doloCen integral

funkcije f(x). Tu je F nedoloCen integral funkcije f.

2
15\/
1

05

07702 04 06 08 1 12 14 16 18 2
x

Ce ne znamo izraunati nedoloenega integrala F, smo v
~ 2 H
teZzavah. Npr. za f(x) = e, g(x) = #2%, h(x) = x tan x.

Prav tako ne moremo to¢no izracunati vrednosti integrala, ¢e

imamo funkcijo podano samo na neki mnozici tock.
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Osnovno traEezno pravilo in napaka E
Integral j:+ f(x) dx tako, da f aproksimiramo z linearno
funkcijo in izraCunamo plos¢ino pod linearno funkcijo oz.

trapezom.
| S
p(x) = f(a) + f“’; - ;(a) 2
Velja
E f(x) dwa:p(x) dx = f(a)(b —a) + f(b;:;(a) (b_za)z
- (b;"” (f(a) + f(b))

131/170



Pri tem je napaka naslednja:

o f

a

_ f//(T]) (—1(b o a)3>

2

6

(b —a)*f"(n)

12

kjer je n € [a, b] in tretja enakost sledi po izreku o fla, b, &].

fla,b, x](x — b)(x — a) dx

(x —b)(x—a)dx
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Sestavljeno trapezno pravilo
Ce interval ni zelo kratek, potem ogitna naivna linearna transformacija
obi€ajno ne da dobrega priblizka integrala.

Ce interval [a, b] razdelimo z ekvidistantnimi tockami X, X1, . . . , Xn, 1.
h:=hj = Xip1 — X

je konstanta in na vsakem intervalu uporabimo osnovno trapezno pravilo,

dobimo:
b h n—1
L fix) dx ~ 1 ; F(x3) + F(Xis1)
= g (f(xg) +2f(xq) + 2f(X2) + - - - + 2f(Xpn—1) + f(Xn))
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Napaka E; na intervalu [x;, Xj, 1] je enaka

R (my)

E — 3 za nek n; € [x;, Xiy1).

Torej je skupna napaka

n—1 n—1
_ h®- ") _ h®-nf"()
E—ZE’_Z_ 12 12
i=0 i=0
_ | _(b—a)h®-f"(m)
B 12 ’

kjer jen € [a, b] in smo v tretji enakosti uporabili izrek o srednji

vrednosti (f” je zvezna) in v zadnji enakosti dejstvo, da je
b —a = nh.
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. 1 2
Primer - [, e dx
Koliko to¢k uporabiti, da bo sestavljeno trapezno pravilno
natan&no z napako omejeno z 1067
Zelimo

_ 2£1
‘(b a)h=f"(n) <106

12
Kako velik je drugi odvod " (x)?

f(x) = —2xe %, f"(x) = -2 % +4x2e "
Ker je
(x) = 12xe X — 8x3e** = 4x(3 — 2x%)e ¥

pozitiven na [0, 1], je f” monotono naraséajo¢ na [0, 1] in zato
|f""] zavzame maksimum v kraji§¢u: |f”/(0)] = 2. Potem lahko

omejimo

o 2

bal2h” 456 - wcet0® = JABI10°<n,
12 T

~410
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Trapezno pravilo s kontrolo koraka

Motivacija. Ce uporabimo sestavljeno trapezno pravilo, moramo:
> Vnaprej dologiti velikost h.

» Ce zelimo oceniti napako, moramo znati oceniti f”(n) na intervalu [a, b].

Obe tezavi zelimo resiti, tj. radi bi, da funkcija samo zmanjSuje h, v kolikor
napaka ni dovolj manjka. V ta namen moramo znati to napako oceniti.
Pridemo do

Najbo I = f:’ f(x)dx in T(h) ocena za | z uporabo sestavljenega trapeznega
pravila z velikostjo intervala h.

Spomnimo se, da pri sestavljenem trapeznem pravilu T(h) za napako E(h)
velja:

b—a
12
Zelimo se izogniti dejstvu, da moramo poznati f”. Zapigimo napako $e v

primeru razpolovljenega koraka, {j. g:

b—a,, h
12 f"(&ny2) T
Predpostavimo, da je priblizno za vsak h.

E(h)=T(h) —I= f"(En)h?,  Kjerje &, € (a, b).

2

E(h/2) = T(h/2) — | =

Kier je &n/2 € (a, b).
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Dobimo:

2
|=T(h)—Ch?=T(h/2) — ChZ.
Sledi:
3 2 4 2 4
T(h)—T(h/2) = ZCh + O(h*) 0z. Ch* ~ g(T(h) —T(h/2)).
Tako sta
priblizka za napaki in . Velja
_T(h h ¢ , B
Th/2)= —= +3 Z fla+(i—1/2)h), n=(b—a)/h.
~—— i=1
razpolovimo T (h) N
ratunamo samo ta del
Algoritem:

1. Izratunamo T(b —a) = (b — a)"@L®),

2. lzratunamo T((b—a)/2) = 152 + b22f((a + b)/2).

3. lzraGunamo %(T(b —a)—T((b—a)/2)). Ce je to dovolj majhno po
absolutni vrednosti, kon¢amo, priblizek za integral pa je T((b — a)/2).
Sicer ponovimo postopek z razpolovljenim h.
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Adaptivno trapezno pravilo

Motivacija: Ce uporabimo trapezno pravilo s kontrolo koraka, potem dolZine
koraka h ne rabimo sami dolociti, vendar pa je h enak na celotnem
integracijskem intervalu. Zeleli bi, da na nekaterih delih intervala uporabimo
vecje h, manjSe pa le tam, kjer je to res potrebno.

Zgorniji cilj lahko dosezemo z uporabo
> Najprejizratunamo T(b—a)in T((b —a)/2).

» Ce je podobno kot pri kontroli koraka zgoraj ocena napake
e := 122 T(b-2) dovolj majhna, vrnemo T((b — a)/2) + e in

kon¢amao.

» Ce je e prevelik, ponovimo zgornji postopek lo¢eno za podintervala
in , pri éemer naj bo napaka na vsakem
najvec

» Rekurzivno nadaljujemo zgornji postopek in dobimo oceno integrala, pri

cemer delilne toCke ne bodo enakomerno razporejene po intervalu
[a, b].
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Enostavno Simpsonovo pravilo
Naj bo p> polinom stopnje 2, s katerim interpoliramo tocke

a+b a+b _
( 5 (=5 ). (b.f(b)):

(a.f(a)),

po(x) =Co+Cy-(x—a)+Co-(x—a) (x—a;b> .
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Oznagimo h := 252, Redujemo sistem:

pa(a) = f(a), pz(a;b) = f(a;rb), pa(b) = f(b).

Dobimo
Co=flal=f(a), Cy= f{a, a er b] _ fla+ hli —fla)

a+b f(a+2h) —2f(a+ h) + f(a)
2 2h2 '

Rac¢unamo jg p2(x)dx (naredimo subsitucijo x = a + 1);

ngf[a, ,b} -

a-+2h 2h
J pa(x) dx=J pa(a+1) dt
a 0

= f(a)-2h+f(a+h;_f(a) .2h2 +
f(a+2h) —2f(a+ h) + f(a) -gh"’—
2h2 3

(f(a) + 4f(a+ h) + f(a+2h)) |

W
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V prejSnjem izracunu smo upostevali

p2(a+t)=Co+ Cit+ Cot(t— h).

Izkaze se, da je napaka priblizno:

1

90

h* 4 (E) |

& ela, bl
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Sestavljeno Simpsonovo pravilo in napaka
Vzemimo ekvidistantno particijo P ={xg = a < --- < x, = b} intervala [a, b]
na sodo Stevilo enako dolgih intervalov in na zaporednih trojicah tock

uporabimo osnovno Simpsonovo pravilo (h = xj.1 — X;):

14

0 h
|0 ax = Y Zifoa) +4101.0) + f002)
i=0

[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(Xa) + - - - + f(Xn)]

h
K

o |
| N
o ‘ .
oos-| l Tk
1 s 2 a3 s 4 as l
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Napaka E; na intervalu [xo;, X2i12] je enaka

he1) (n;)
E—_—
: 90
za nek n; € [Xo, Xoi12]. Torej je skupna napaka
21 21
o f®m)  nh*f¥(n)
% & 90 290

_ | _(b—a)h*f"(n)
B 180

kjer je 1 € [a, b] in smo v tretji enakosti uporabili izrek o srednji vrednosti.
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Adaptivho Simpsonovo pravilo
Motivacija. Ideja je povsem enaka kot pri adaptivnem trapeznem pravilu, tj.
radi bi uporabili &im vegji h povsod, kjer je to mogoce. Ce s S(h) oznagimo
vrednost sestavljenega Simpsonovega pravila s korakom dolzZine h, potem
napako E ocenimo iz S(h) in S(h/2).

Postopek:
> Najprej izratunamo S(b — a) in S((b — a)/2).
> Iz fZ f(x)dx = S(h) + C1h* = S(h/2) + C4(5)* izrazimo

c.(h * S(b—a)/2—S(b-a)
"\2) — 15 ’
kar je nasa ocena napake E. Ce je E dovolj majhna, vrnemo

S((b—a)/2) + E in konéamo.

» Ceje £ prevelik, ponovimo zgornii postopek lo&eno za podintervala
la,(a+b)/2lin[(a+ b)/2, bl, pri Cemer naj bo napaka na vsakem
najve¢ polovica zaCetne tolerance.

» Rekurzivno nadaljujemo zgornji postopek in dobimo oceno integrala, pri
Cemer delilne toCke ne bodo enakomerno razporejene po intervalu
la, b].

144/170



Gaussove kvadraturne formule

> NC pravila za integriranje so oblike
b n
J f(x)dx ~ Y wf(x), (14)
a j=0
Kjer so toCke x; enakomerno razporejene, vozli w; pa uteZi.

> Vemo pa ze iz poglavja o interpolacijskih polinomih, da ekvidistantne
toCke niso vedno najbolj$a izbira.

> Resili se bomo ekvidistantnih vozlov v kvadraturnih formulah.
> V formuli (14) bomo , tako
da , tj. integracijsko pravilo bo to¢no
za polinome najvisjih moznih stopen;.
> Imamo n+ 1 prostih to¢k x; € [a, b],
as<Xo<Xg<--<Xp_1<Xp<b.

in n + 1 realnih koeficientov w;, tj. skupaj 2n + 2 neznank.
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Primer najboljSih vozlov za interval [—1, 1]
Oglejmo si primer n =1 (tj. 2 toc¢ki) na primeru intervala [—1, 1]. Pois¢imo wy,
w1, Xo, X1, tako da velja

.
J f(x) dx ~ wof(Xg) + wif(Xq),
—1

pri emer je aproksimacija kar se da to¢na.

2
( +1)dx = +x} —475.

155000 1% 4.75000

A

Cilj: poi§€i wy, wy, Xo, X4 tako da bi aproksimacija tocna za polinome stopnje
najvec 3:

f(x) = co + C1 X + Cax® + c3x°.
To pomeni, da mora za vsak ¢y, ¢1, C2, C3 € R veljati:

1 1
J f(x) dx = J (Co + Cix + Cax® + c3x%) dx
—1 —1

=W (Co+ CiXo + CoX§ + C3X3) + Wi (Co+ CiX1 + CoX? + C3x7) .
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Desno stran preuredimo na konstantne, linearne, kvadraticne in kubicne
clene, ter dobimo, da je naslednji izraz

1 1
Co (wo+w1 —J 1dx> + ¢4 (woxo+w1x1 —J xdx)
—1 —1

1 1
+ G <w0x§ + wyxé — J x? dx> +c3 (Woxg’ +wix — J x® dx) .
1 1

nicelen. Ker so koeficienti ¢y, ¢1, Cz in ¢3 poljubni, morajo biti koeficienti pri
njih nicelni.
Od tod sledi:

1 1
W0+W1:J 1dx =2 Woxo+w1x1:J xdx=0
—1 —1

1 2 1
W0x§+w1x12:J x? dx:g W0x§+w1x13:J x¥dx =0
1 1

Z nekaj algebre pridemo do:

W0:1 wy =1 XOZ—? X1:£

Zato:
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PosploSitev na interval [a, b]

Z linearno substitucijo
t=ao+ax, tla=-1,tb)=1,

preslikamo interval [a, b] na [-1, 1].

Velja ap = — 22 in a; = ;2 ter
b—a b+a b—a
X = 5 t+ 5 dx = 5 dt.
Sledi:
b 1 o o
Jf(x)dx:J y (b—a)t+b+a\b adt
2 1 2 2

in lahko uporabimo kvadraturno formulo nad [—1, 1].

Z uporabo dveh to¢k, n = 1, smo dobili toCen integral za polinome stopnje
najvec2-1+4+1=23.

148/170



Razsiritev Gaussovih kvadraturnih formul

Sedaj je nas cilj razsiriti zgornje pravilo tako, da bo delovalo za polinome visje
stopnje, tj. z vsaki dodanim parom vozla in utezi Zelimo povecati toénost za
dve stopniji.
Velja:
> Smiselno kvadraturno pravilo za integracijo nad intervalom [—1, 1] na
enem vozlu bi uporabilo x = 0. To pa je ni¢la funkcije

> Kvadraturo pravilo na dveh to¢kah i% smo dobili za nicli funkcije

> Kako nadaljevati?

149/170



Izrek (Gauss)
Naj bo q(x) netrivialen polinom stopnje n + 1, tako da je

b
Jxkq(x)dx:o zavsakk =0,1,..., n

a

in naj bodo xg, x1, . . ., Xn nicle funkcije q(x). Potem velja

kjer je
b
A,-:J (i(x)dx zai=0,...,n,
a
pri Cemer {; oznacuje i-ti Lagrangeov bazni polinom na tockah
Xo, ..., Xn, pravilo pa je to¢no za polinome stopnje najve¢
2n+1.
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ResSevanje diferencialnih
enacb

y'=f(x,y), y(xo)=Yo

» Eulerjeva metoda
» Runge-Kutta metode
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Diferencialna enacba
Diferencialna enacba (DE) je enacba oblike:
F(t,x,x,X,...,x™M) =0, (16)
kjer je x = x(t) odvisna spremenljivka, t neodvisna spremenljivka, x
pa oznacuje odvod x po t.

Cejey=y(x) spremenljivka, x pa , potem je DE
oblike
Fix,y',y", ....y!")=0. (17)

Klju€na lasnost DE je ta, da poleg neodvisne spremenljvike t (0z. x)
in odvisne spremenljivke x (0z. y) nastopajo Se odvodi odvisne
spremenljivke x, ..., x" (oz. y’, ..., y("M).

Resitev DE je (dovoljkrat odvedljiva) funkcija, ki zado$¢a enacbi (16)
0z. (17) na definicijskem obmocju D neodvisne spremenljivke.

Red DE je stopnja najviSjega odvoda, ki nastopa v DE.

Y =y, y +5xy =3x%, x +x =0, X + ax + bx = A cos wt.
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SploSna resitev diferencialne enacbe reda n je druzina funkcij,
odvisna od n parametrov, ki so vse resitve diferencialne enacbe.

Primer
Resimo DE y’ = y.

ay _ dy _ JQ_J
dxfy:> yfdx¢ yfdx

= log(ly)=x+C, CeR
= y=Ke*¥ KeR

-1 0.5 0 0.5 1 1.5 2 25 3
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Partikularna reSitev je posamezna reSitev iz te druZzine.
DolocCena je z n dodatnimi pogoji, na primer z za¢etnimi pogoji:

x(l) = a0, x(to)=a1,..., x"V(t)=an

Zelo malo DE je analiti¢no resljivih. Mednje sodijo:
» DE z locljivima spremenljivkama
» Linearne DE
» DE zelo posebne oblike

Vecina DE ni analiticno resljivih. Te reSujemo numeri¢no.
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Diferencialna enacba 1. reda z locljivima
spremenljivkama

x = f(t)g(x)

Enacbo resimo tako, da vpelijemo x = % in lo¢imo spremenljivki:

155/170



Linearna diferencialna enacba

y'+f(x)y =g(x) (18)
Pravimo, da je enatba homogena, ¢e je g(x) = 0 in nehomogena, ¢e
je g(x)#0.
1. ReSimo homogeni del y’ + f(x)y = 0 s pomocjo locitve
spremenljivk. Dobimo reSitev

y = Ce [1¥¥& = Cz(x)

2. Metoda variacije konstante
> V (18) vstavimo y = C(x) z(x) in reSimo na C(x).
> Tako dobljeni C vstavimo v resitev homogenega dela.
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Numeric¢no reSevanje DE
Na intervalu [a, b] reSujemo DE prvega reda

y'=flxy), yla)=yo (19)
Interval [a, b] razdelimo z zaporedjem tock
A=Xg< Xy <Xo<...<Xn=Db.

Z y; oznacimo priblizek za resitev (19) v tocCki x;. Oznacimo dolzino
koraka z h,‘ = Xjr1 — Xi.

Razliko med priblizkom in to¢no resitvijo v x; piSemo z g; = y; — y(x;)
in jo imenujemo globalna napaka v x;.
Razliko med priblizkom in to€no resitvijo DE

!

z'=1(x,2),  z(Xi—1) = Yi-1 (20)

v X; piSemo z {; = y; — z(X;) in jo imenujemo V X;.

Red metode je $tevilo p € IN, ki zadod¢a | ¢ = ChP*" + O(h5*?)
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Eulerjeva metoda
Pri tej metodi v vsaki toCki x; uporabimo linearno aproksimacijo
funkcije. Resitev na intervalu [x;, x;. 1] nadomestimo z odsekom
tangente na graf resitve v tocki x;:

Yie1 = Yi+ hi- f(xi, yi).

FRAVA e=tirey R, Al = e
PRavA ES eV 4 =R W)
PRAVA RES\TEV B, (a()‘»q):r\d“

\a); 3\( ) 5 B\‘”>= Yo
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o N o O A~ WO N =

Y="%

X = Xo
h=(b-—a)/n
for i=1,..., n—1
y=y+h-f(x,y)
X=x+h
end
Ker je

2
YOx+h) = y(0 +hy' () + Ty ), g box e+ h
—_—

| —

upos$tevamo
P napaka

je red Eulerjeve metode 1.
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Metode Runge-Kutta

Ideja teh metod je, da za aproksimacijo odvoda na intervalu [xp, X 1]
ne upostevamo odvoda le v tocki x,, temveC neko utezeno povprecje
odvodov na [Xp, Xn1].

Primer (Metode Runge-Kutta (RK) reda 2)

Upostevamo odvoda v tocki X, in xp, + ch € [Xn, Xn11], kjer je

h = xp 1 — Xxp inc € [0, 1]. Priblizek y,.1 izraGunamo tako, da se
premaknemo za uteZeno povprecje premikov po tangentah v toCkah
Xn in Xp + ch:

Vit =Ynt b1 (010, yn)) + bz - (- H(Xa + N, y(xa + ch))) (21)

uteZ  tangenta v x, utez tangenta v x,+ch
Upostevamo
Y (Xn+ch) = yn + chy’(Xn) = yn + Chf(Xp, Yn) = Yn + ahf(xn, ¥n), (22)
kjer je a postal prost parameter.
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Primer (Metode Runge-Kutta (RK) reda 2)
Upostevamo (22) v (21) in dobimo

Yni1=Yn+ b1 (h-f(Xn, yn)) +b2 - (h-f(Xn +Ch,yn+a-ki)). (23)
k1 k2

Z razvojem funkcij y(xn + h) in f(x, + ch, y, + akq) v Taylorjevi vrsti in
primerjavo koeficientov pri h in h? v (23) dobimo pogoja

1= by + by,
1 (24)
5+ fyf)n = baC(f)n + bealffy)n,

kier fn, (fc)n, (f,)n pomenijo f(Xn, ¥n), f(Xn, Yn), fy (X, ¥n)- Enacbi (24)
imata veliko reSitev, npr.:

> by =bo =} inc=a=1. RK metoda je:

1
Ynt1 =Yn+ §(k1 + ko),

ki = hf(Xn, yn),
ko = hf(x, + h, yn + ky).
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Primer (Metode Runge-Kutta (RK) reda 2)
» by =1,b,=0inc =a=}. RK metoda je:

Ynr1 =Yn+ kz,
ki = hf(Xn, ¥n),

1 1
ko = hf(x, + Eh,yn + §k1)

SploSna RK metoda je oblike

Yni1 = Yn + b1k + b2kz + ... + bsks,
ki = hf(Xn, Yn),
ko = hf(xn + C2h, yn + a2 1ky),
ks = hf(x, 4+ c3h, yn + ki + ko),
ks = hf(xn + csh, yn + ki+...+

ks—1)-

(25)
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Butcherjeva tabela

RK metode (25) v kompaktni obliki shranjujemo v Butcherjevi tabeli:

0
Co
C3

Cs

0
as 1 0
azt1 a2 O

as\ aSQ as 3

kier je Se

by by bz

Co=dp1,
C3 = dsz 1+ asp,

Cs =ds 1 +dso+

s s—1 0
bs—1 bsy
...t dss—1.
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Metoda Runge-Kutta reda 4

Butcherjeva tabela:

=N =N = O

= O O N—= O
W= ON|l—= O

W= = O
o4 O

Metoda je

1 1 1 1

Yny1 =Yn+ é/ﬁ + §k2 + §k3 + ék4,
1 1

ki = hf(Xn, ¥n), k2:hf(xn+§hv)’n+§k1),

1 1
kszhf(xn+§hv}’n+§k2). ks = hf(xn + h, yn + k).
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Ocenjevanje napake in kontrola koraka

1. PriraCunanju nas zanima velikost globalne napake.
2. Med izvajanjem metode ocenjujemo velikost lokalnih napak.

3. Na velikost lokalnih napak kljucno vpliva izbira dolzine koraka.

Naj bo M metoda reda p, s katero izraCunamo y(xn.1) z dolzino
koraka h. Priblizek oznaCimo z y,;1 5. Velja:

o1 = Yni1,h — Z(Xns1) = CHPTY, (26)
kijer je z(x) reSitev zaCetnega problema
y'=1fx.y), y(Xn)=yn. (27)
Podobno velja:
Unit = Ynit,n2 — Z(Xni1) ~ C(h/2)PT1 + C(h/2)PT! = 27PChPHT,

(28)
saj smo pri koraku h/2 naredili dva koraka metode.
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Odstejemo (28) od (26) in dobimo
Ynit.h — Ynri,n2 & ChPT (1 —27P), (29)

Iz (29) izrazimo ChP*" in dobimo

Chp+1 & Yoth Iz (30)

1. Ceje |tni1] < €h, potem y, 1 n Sprejmemo.
V vsaki to€ki namre¢ omejimo napako na €. Na celem intervalu
integriramo torej napako najvec e in dobimo mejo eh.

2. Ceje [tn. 1| > eh, potem ponovimo radunanje priblizka y(x,41) s
krajSim korakom.

3. Ce je [€n4 1] bistveno manjsi od eh, lahko v nadaljevanju
uporabimo daljSi korak.
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Globalna napaka

Lipschitzov pogoj. Funkcija f je Lipschitzova v y (na danem obmocju)
s konstanto L, Ce za vse x in vse y1, y» iz obmocja velja

(X, y1) — f(x, y2)l < Lly1 — yal.
To je standarden (lokalno pogosto izpolnjen) pogoj: Ce je 9f/dy
zvezna in omejena na obmocju, potem je f Lipschitzova.

(Povezava z globalno napako) Ce je f Lipschitzova v y s konstanto L,
potem velja

i

i
gl < e S 0l < e Y oyl
k=1

k=1
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Globalna napaka

Zakaj kriterij €, 1| < eh? Ce na vsakem koraku dosezemo |¢] < ehy,

potem
i i
Dl s ey he=elxi—
k=1 k=1

zato po zgornji oceni sledi
gil < etP® ZIM Je(xi—a) < etP¥e(b—a),

(Torej eh pomeni priblizno konstantno napako na enoto dolzine;
globalna napaka je nadzorovana do stabilnostnega faktorja.)
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Sistemi diferencialnih enacb
Sistem DE je oblike:

kjer so y1(x), ..., ¥ym(x) neznane funkcije. Imamo Se m zacetnih
pogojev Sistem (31) lahko zapiSemo v
vektorski obliki: .

y=1xy), Y(x) = o, (32)

kjer so

Sistem (32) lahko reSujemo z Runge-Kutta metodami, le da vse funkcije
podamo kot vektorske funkcije, tocke pa kot vektorije.
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Robni problem - strelska metoda
Robni sistem DE v dveh spremenljivkah je oblike:

y'=fxy 2),
Z/ = g(x,y,Z),

kjer sta y(x) in z(x) neznani funkciji, x € [a, b], dana pa sta Se
pogoja

Sistem (33) na intervalu reSujemo s strelsko metodo, tako da
ugibamo vrednost z(a) = «4, reSimo zacetni problem z eno od
numeri¢nih metod in pogledamo, ali je v reSitvi res z(b) = z,. To
skoraj gotovo ne bo izpolnjeno.

Zato uvedemo
F:R—-R, o zp—2z(b).

Radi bi nasli «, tako, da je F(x) = 0. I1S¢emo torej ni¢lo funkcije F. Ker F ni
eksplicitno podana, tangentne metode za iskanje ni¢le F ne moremo
uporabiti. Lahko pa uporabimo sekantno metodo, pri ¢emer sprva
izratunamo F (o) in F(xp) za dva zagetna priblizka o, xo.
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